scholarly journals Treatment of anisotropic damage development within a scalar damage formulation

1997 ◽  
Vol 19 (6) ◽  
pp. 522-526 ◽  
Author(s):  
K. S. Chan ◽  
S. R. Bodner ◽  
D. E. Munson
2010 ◽  
Vol 20 (4) ◽  
pp. 598-617 ◽  
Author(s):  
Claudia Comi ◽  
Umberto Perego

An anisotropic two-phase coupled chemo-thermo-damage model is proposed, for the simulation of the behavior of concrete affected by the alkali-aggregate reaction, which may create significant damage in existing concrete structures. The chemical reaction produces a gel expanding in the concrete pores, leading to macroscopic strength and stiffness deterioration in the concrete skeleton. The model is capable to account for the anisotropic damage development and consequent directional degradation of material properties. The model is validated against experimental tests taken from the literature.


2020 ◽  
Vol 60 (6) ◽  
pp. 1324-1332
Author(s):  
Jonas Maximilian Müller ◽  
Nicolas Rozo Lopez ◽  
Enzo Alexander Klein ◽  
Christian Hopmann

2013 ◽  
Vol 554-557 ◽  
pp. 1245-1251 ◽  
Author(s):  
M.S. Niazi ◽  
V. Timo Meinders ◽  
H.H. Wisselink ◽  
C.H.L.J. ten Horn ◽  
Gerrit Klaseboer ◽  
...  

The global fuel crisis and increasing public safety concerns are driving the automotive industry to design high strength and low weight vehicles. The development of Dual Phase (DP) steels has been a big step forward in achieving this goal. DP steels are used in many automotive body-in-white structural components such as A and B pillar reinforcements, longitudinal members and crash structure parts. DP steels are also used in other industrial sectors such as precision tubes, train seats and Liquid Petroleum Gas (LPG) cylinders. Although the ductility of DP steel is higher than classical high strength steels, it is lower than that of classical deep drawing steels it has to replace. The low ductility of DP steels is attributed to damage development. Damage not only weakens the material but also reduces the ductility by formation of meso-cracks due to interacting micro defects. Damage in a material usually refers to presence of micro defects in the material. It is a known fact that plastic deformation induces damage in DP steels. Therefore damage development in these steels have to be included in the simulation of the forming process. In ductile metals, damage leads to crack initiation. A crack is anisotropic which makes damage anisotropic in nature. However, most researchers assume damage to be an isotropic phenomenon. For correct and accurate simulation results, damage shall be considered as anisotropic, especially if the results are used to determine the crack propagation direction. This paper presents an efficient plasticity induced anisotropic damage model to simulate complex failure mechanisms and accurately predict failure in macro-scale sheet forming processes. Anisotropy in damage can be categorized based on the cause which induces the anisotropy, i.e. the loading state and the material microstructure. According to the Load Induced Anisotropic Damage (LIAD) model, if the material is deformed in one direction then damage will be higher in this direction compared to the other two orthogonal directions, irrespective of the microstructure of the material. According to Material Induced Anisotropic Damage (MIAD) model, if there is an anisotropy in shape or distribution of the particles responsible for damage (hard second phase particles, inclusions or impurities) then the material will have different damage characteristics for different orientations in the sheet material. The LIAD part of the damage model is a modification of Lemaitre’s (ML) anisotropic damage model. Modifications are made for damage development under compression state and influence of strain rate on damage, and are presented in this paper. Viscoplastic regularization is used to avoid pathological mesh dependency. The MIAD part of the model is an extension of the LIAD model. Experimental evidence is given of the MIAD phenomenon in DP600 steel. The experimental analysis is carried out using tensile tests, optical strain measurement system (ARAMIS) and scanning electron microscopy. The extension to incorporate MIAD in the ML anisotropic damage model is presented in this paper as well. The paper concludes with a validation of the anisotropic damage model for different applications. The MIAD part of the model is validated by experimental cylindrical cup drawing wheras the LIAD part of the model is validated by the cross die drawing process.


2006 ◽  
Vol 55 (2) ◽  
pp. 224-229 ◽  
Author(s):  
Takao OTA ◽  
Hikaru YOSHIZUMI ◽  
Hirokazu TSUCHIHASHI ◽  
Takashi MATSUOKA ◽  
Kazuhiko SAKAGUCHI

2002 ◽  
Vol 5 (2-3-4) ◽  
pp. 269-285 ◽  
Author(s):  
Patrick Croix ◽  
Franck Lauro ◽  
Jérôme Oudin
Keyword(s):  

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 446d-446
Author(s):  
Beyounghan Yoon ◽  
Harvey J. Lang

Begonia × cheimantha (Christmas or Lorraine begonia) is a popular holiday crop in Europe, with certain cultivars having outstanding postharvest characteristics. Its commercial production in the southern United States has been limited by the occurrence of mottled leaf chlorosis and necrosis, apparently due to environmental stress. In this study, B. × cheimantha `Emma' was grown in the fall in a glass greenhouse at College Station, Texas, under either 0%, 60%, or 87% polyethylene shade cloth. Leaf chlorosis and necrosis was very severe on plants grown in full sun (≈650 mol·m–2·s–1), with slight chlorosis on plants under 60% shade. Plants under full sun, however, were more compact, flowered earlier, and had shorter peduncles with more flowers than those grown under shade. Reducing the vegetative long-day treatment period from 7 to 4 weeks had no effect on leaf damage development. Plants treated with paclobutrazol were shorter and had less leaf damage than untreated plants. Leaves of treated plants had a relatively higher concentration of soluble protein, chlorophyll, and enhanced activities of ascorbate peroxidase (AsA), dehydroascorbate (DHA) reductase, and monodehydro-ascorbate (MDHA) reductase than untreated plants. For Texas growing conditions, these preliminary studies indicate that B. × cheimantha should be grown under reduced light intensities, with excessive height and leaf damage being controlled with growth retardants such as paclobutrazol.


Sign in / Sign up

Export Citation Format

Share Document