scholarly journals Predicting the damage development in epoxy resins using an anisotropic damage model

2020 ◽  
Vol 60 (6) ◽  
pp. 1324-1332
Author(s):  
Jonas Maximilian Müller ◽  
Nicolas Rozo Lopez ◽  
Enzo Alexander Klein ◽  
Christian Hopmann
2010 ◽  
Vol 20 (4) ◽  
pp. 598-617 ◽  
Author(s):  
Claudia Comi ◽  
Umberto Perego

An anisotropic two-phase coupled chemo-thermo-damage model is proposed, for the simulation of the behavior of concrete affected by the alkali-aggregate reaction, which may create significant damage in existing concrete structures. The chemical reaction produces a gel expanding in the concrete pores, leading to macroscopic strength and stiffness deterioration in the concrete skeleton. The model is capable to account for the anisotropic damage development and consequent directional degradation of material properties. The model is validated against experimental tests taken from the literature.


2013 ◽  
Vol 554-557 ◽  
pp. 1245-1251 ◽  
Author(s):  
M.S. Niazi ◽  
V. Timo Meinders ◽  
H.H. Wisselink ◽  
C.H.L.J. ten Horn ◽  
Gerrit Klaseboer ◽  
...  

The global fuel crisis and increasing public safety concerns are driving the automotive industry to design high strength and low weight vehicles. The development of Dual Phase (DP) steels has been a big step forward in achieving this goal. DP steels are used in many automotive body-in-white structural components such as A and B pillar reinforcements, longitudinal members and crash structure parts. DP steels are also used in other industrial sectors such as precision tubes, train seats and Liquid Petroleum Gas (LPG) cylinders. Although the ductility of DP steel is higher than classical high strength steels, it is lower than that of classical deep drawing steels it has to replace. The low ductility of DP steels is attributed to damage development. Damage not only weakens the material but also reduces the ductility by formation of meso-cracks due to interacting micro defects. Damage in a material usually refers to presence of micro defects in the material. It is a known fact that plastic deformation induces damage in DP steels. Therefore damage development in these steels have to be included in the simulation of the forming process. In ductile metals, damage leads to crack initiation. A crack is anisotropic which makes damage anisotropic in nature. However, most researchers assume damage to be an isotropic phenomenon. For correct and accurate simulation results, damage shall be considered as anisotropic, especially if the results are used to determine the crack propagation direction. This paper presents an efficient plasticity induced anisotropic damage model to simulate complex failure mechanisms and accurately predict failure in macro-scale sheet forming processes. Anisotropy in damage can be categorized based on the cause which induces the anisotropy, i.e. the loading state and the material microstructure. According to the Load Induced Anisotropic Damage (LIAD) model, if the material is deformed in one direction then damage will be higher in this direction compared to the other two orthogonal directions, irrespective of the microstructure of the material. According to Material Induced Anisotropic Damage (MIAD) model, if there is an anisotropy in shape or distribution of the particles responsible for damage (hard second phase particles, inclusions or impurities) then the material will have different damage characteristics for different orientations in the sheet material. The LIAD part of the damage model is a modification of Lemaitre’s (ML) anisotropic damage model. Modifications are made for damage development under compression state and influence of strain rate on damage, and are presented in this paper. Viscoplastic regularization is used to avoid pathological mesh dependency. The MIAD part of the model is an extension of the LIAD model. Experimental evidence is given of the MIAD phenomenon in DP600 steel. The experimental analysis is carried out using tensile tests, optical strain measurement system (ARAMIS) and scanning electron microscopy. The extension to incorporate MIAD in the ML anisotropic damage model is presented in this paper as well. The paper concludes with a validation of the anisotropic damage model for different applications. The MIAD part of the model is validated by experimental cylindrical cup drawing wheras the LIAD part of the model is validated by the cross die drawing process.


2012 ◽  
Vol 498 ◽  
pp. 42-54 ◽  
Author(s):  
S. Benbelaid ◽  
B. Bezzazi ◽  
A. Bezazi

This paper considers damage development mechanisms in cross-ply laminates using an accurate numerical model. Under static three points bending, two modes of damage progression in cross-ply laminates are predominated: transverse cracking and delamination. However, this second mode of damage is not accounted in our numerical model. After a general review of experimental approaches of observed behavior of laminates, the focus is laid on predicting laminate behavior based on continuum damage mechanics. In this study, a continuum damage model based on ply failure criteria is presented, which is initially proposed by Ladevèze. To reveal the effect of different stacking sequence of the laminate; such as thickness and the interior or exterior disposition of the 0° and 90° oriented layers in the laminate, an equivalent damage accumulation which cover all ply failure mechanisms has been predicted. However, the solution algorithm using finite element analysis which implements progressive failure analysis is summarized. The results of the numerical computation have been justified by the previous published experimental observations of the authors.


Author(s):  
N Carrere ◽  
N Tual ◽  
T Bonnemains ◽  
E Lolive ◽  
P Davies

In this study, a damage model that accounts for the effect of seawater ageing is proposed. The model is based on a failure criterion that takes into account the effect of the ply thickness, while the kinetics of the damage development are based on a Finite Fracture Mechanics approach. The stiffness degradation is identified by a multiscale approach. The parameters of the model are physically based which facilitates the identification and the coupling with the ageing. These and their evolution as a function of the time of immersion in seawater have been identified for a carbon/epoxy composite. The changes in crack density as a function of the applied load for three ageing times are quite well predicted by the model. The model explains why the damage threshold is strongly influenced by the ageing while the kinetics of the crack propagation remain quasi-constant.


2015 ◽  
Vol 784 ◽  
pp. 292-299 ◽  
Author(s):  
Stephan Wulfinghoff ◽  
Marek Fassin ◽  
Stefanie Reese

In this work, two time integration algorithms for the anisotropic damage model proposed by Lemaitre et al. (2000) are compared. Specifically, the standard implicit Euler scheme is compared to an algorithm which implicitly solves the elasto-plastic evolution equations and explicitly computes the damage update. To this end, a three dimensional bending example is solved using the finite element method and the results of the two algorithms are compared for different time step sizes.


2011 ◽  
Vol 21 (5) ◽  
pp. 713-754 ◽  
Author(s):  
M. S. Niazi ◽  
H. H. Wisselink ◽  
T. Meinders ◽  
J. Huétink

The Lemaitre's continuum damage model is well known in the field of damage mechanics. The anisotropic damage model given by Lemaitre is relatively simple, applicable to nonproportional loads and uses only four damage parameters. The hypothesis of strain equivalence is used to map the effective stress to the nominal stress. Both the isotropic and anisotropic damage models from Lemaitre are implemented in an in-house implicit finite element code. The damage model is coupled with an elasto-plastic material model using anisotropic plasticity (Hill-48 yield criterion) and strain-rate dependent isotropic hardening. The Lemaitre continuum damage model is based on the small strain assumption; therefore, the model is implemented in an incremental co-rotational framework to make it applicable for large strains. The damage dissipation potential was slightly adapted to incorporate a different damage evolution behavior under compression and tension. A tensile test and a low-cycle fatigue test were used to determine the damage parameters. The damage evolution was modified to incorporate strain rate sensitivity by making two of the damage parameters a function of strain rate. The model is applied to predict failure in a cross-die deep drawing process, which is well known for having a wide variety of strains and strain path changes. The failure predictions obtained from the anisotropic damage models are in good agreement with the experimental results, whereas the predictions obtained from the isotropic damage model are slightly conservative. The anisotropic damage model predicts the crack direction more accurately compared to the predictions based on principal stress directions using the isotropic damage model. The set of damage parameters, determined in a uniaxial condition, gives a good failure prediction under other triaxiality conditions.


Author(s):  
Junjie Zhou ◽  
Shengnan Wang

In this paper, a progressive damage model for studying the dynamic mechanical response and damage development of composite laminates under low-velocity impact was established. The model applied the Hashin and Hou failure criteria to predict the initiation of intra-laminar damage (fiber and matrix damage); a linear degradation scheme combined with the equivalent displacement method was adopted to simulate the damage development; a cohesive zone model with the bilinear traction-separation relationship was used to predict delamination. A user material subroutine VUMAT was coded, and the simulation analysis of carbon fiber reinforcement composite laminates subjected to 25 J impact was performed via commercial software ABAQUS. The predicted impact force-time curve, impact force-displacement curve, and damage distribution contours among the layers were in a good agreement with the experimental, which verified the proposed model. According to the simulation results, the fiber damage and matrix damage were analyzed, and the expansion of delamination was discussed.


2011 ◽  
Vol 284-286 ◽  
pp. 1678-1683 ◽  
Author(s):  
Da Shun Liu ◽  
Bai Zhi Wang ◽  
Zhi Xun Wen ◽  
Zhu Feng Yue

This paper presents the study of the influences of cooling holes on the creep life behavior in the modeling specimen of single crystal cooling turbine blade at high temperature. Thin-walled cylindrical specimens with holes are tested to model the air-cooled turbine blade. Specimens without holes are also studied to make comparisons. Experimental results show that at 900°C, the creep lives of specimens with holes are longer than those of specimens without holes. Scanning Electron Microscopy (SEM) analyses reveal that creep deformations occur firstly around the cooling holes and finally rupture at the region with low stress and strain. Finite element analyses are used to study the creep damage development by a K-R damage model which has been implemented into the Abaqus user subroutine (UMAT). Simulation results show that stress concentration and redistribution occur around the cooling holes during the creep development. It is also shown that the maximum strain and stress are around the cooling holes which are the initial rupture region in the experiments.


Sign in / Sign up

Export Citation Format

Share Document