Anisotropic Damage Model for Concrete Affected by Alkali-Aggregate Reaction

2010 ◽  
Vol 20 (4) ◽  
pp. 598-617 ◽  
Author(s):  
Claudia Comi ◽  
Umberto Perego

An anisotropic two-phase coupled chemo-thermo-damage model is proposed, for the simulation of the behavior of concrete affected by the alkali-aggregate reaction, which may create significant damage in existing concrete structures. The chemical reaction produces a gel expanding in the concrete pores, leading to macroscopic strength and stiffness deterioration in the concrete skeleton. The model is capable to account for the anisotropic damage development and consequent directional degradation of material properties. The model is validated against experimental tests taken from the literature.

2020 ◽  
Vol 60 (6) ◽  
pp. 1324-1332
Author(s):  
Jonas Maximilian Müller ◽  
Nicolas Rozo Lopez ◽  
Enzo Alexander Klein ◽  
Christian Hopmann

2013 ◽  
Vol 554-557 ◽  
pp. 1245-1251 ◽  
Author(s):  
M.S. Niazi ◽  
V. Timo Meinders ◽  
H.H. Wisselink ◽  
C.H.L.J. ten Horn ◽  
Gerrit Klaseboer ◽  
...  

The global fuel crisis and increasing public safety concerns are driving the automotive industry to design high strength and low weight vehicles. The development of Dual Phase (DP) steels has been a big step forward in achieving this goal. DP steels are used in many automotive body-in-white structural components such as A and B pillar reinforcements, longitudinal members and crash structure parts. DP steels are also used in other industrial sectors such as precision tubes, train seats and Liquid Petroleum Gas (LPG) cylinders. Although the ductility of DP steel is higher than classical high strength steels, it is lower than that of classical deep drawing steels it has to replace. The low ductility of DP steels is attributed to damage development. Damage not only weakens the material but also reduces the ductility by formation of meso-cracks due to interacting micro defects. Damage in a material usually refers to presence of micro defects in the material. It is a known fact that plastic deformation induces damage in DP steels. Therefore damage development in these steels have to be included in the simulation of the forming process. In ductile metals, damage leads to crack initiation. A crack is anisotropic which makes damage anisotropic in nature. However, most researchers assume damage to be an isotropic phenomenon. For correct and accurate simulation results, damage shall be considered as anisotropic, especially if the results are used to determine the crack propagation direction. This paper presents an efficient plasticity induced anisotropic damage model to simulate complex failure mechanisms and accurately predict failure in macro-scale sheet forming processes. Anisotropy in damage can be categorized based on the cause which induces the anisotropy, i.e. the loading state and the material microstructure. According to the Load Induced Anisotropic Damage (LIAD) model, if the material is deformed in one direction then damage will be higher in this direction compared to the other two orthogonal directions, irrespective of the microstructure of the material. According to Material Induced Anisotropic Damage (MIAD) model, if there is an anisotropy in shape or distribution of the particles responsible for damage (hard second phase particles, inclusions or impurities) then the material will have different damage characteristics for different orientations in the sheet material. The LIAD part of the damage model is a modification of Lemaitre’s (ML) anisotropic damage model. Modifications are made for damage development under compression state and influence of strain rate on damage, and are presented in this paper. Viscoplastic regularization is used to avoid pathological mesh dependency. The MIAD part of the model is an extension of the LIAD model. Experimental evidence is given of the MIAD phenomenon in DP600 steel. The experimental analysis is carried out using tensile tests, optical strain measurement system (ARAMIS) and scanning electron microscopy. The extension to incorporate MIAD in the ML anisotropic damage model is presented in this paper as well. The paper concludes with a validation of the anisotropic damage model for different applications. The MIAD part of the model is validated by experimental cylindrical cup drawing wheras the LIAD part of the model is validated by the cross die drawing process.


Author(s):  
Prathamesh J. Baikerikar ◽  
Cameron J. Turner

Fused Deposition Modeling (FDM - a technology of additive manufacturing) parts entail a certain amount of ambiguity in terms of its material properties and microstructure due to its manufacturing technique. Therefore, an FDM part differs from its design model in terms of strength and stiffness. With an increasing amount of FDM parts being used as end use products, it is necessary to simulate and analyze them. Due to the differences in microstructure and material properties of FDM parts, it is necessary to determine the accuracy of analysis methods like Finite Element Analysis (FEA) while analyzing the non-continuous, non-linear FDM parts. The goal of this study is to compare FEA simulations of the as-built geometries with the experimental tests of actual FDM parts. A dogbone geometry with different infill patterns is tested under tensile loading. Further, as-built 3D models are simulated using FEA and the stress results are compared with experimental data. This study found that FEA results are not always an accurate or reliable means of predicting FDM part behaviors.


2021 ◽  
pp. 002199832098559
Author(s):  
Yun-Tao Zhu ◽  
Jun-Jiang Xiong ◽  
Chu-Yang Luo ◽  
Yi-Sen Du

This paper outlines progressive damage characteristics of screwed single-lap CFRPI-metal joints subjected to tensile loading at RT (room temperature) and 350°C. Quasi-static tensile tests were performed on screwed single-lap CCF300/AC721-30CrMnSiA joint at RT and 350°C, and the load versus displacement curve, strength and stiffness of joint were gauged and discussed. With due consideration of thermal-mechanical interaction and complex failure mechanism, a modified progressive damage model (PDM) based on the mixed failure criterion was devised to simulate progressive damage characteristics of screwed single-lap CCF300/AC721-30CrMnSiA joint, and simulations correlate well with experiments. By using the PDM, the effects of geometry dimensions on mechanical characteristics of screwed single-lap CCF300/AC721-30CrMnSiA joint were analyzed and discussed.


2021 ◽  
Vol 11 (15) ◽  
pp. 6972
Author(s):  
Lihua Cui ◽  
Fei Ma ◽  
Tengfei Cai

The cavitation phenomenon of the self-resonating waterjet for the modulation of erosion characteristics is investigated in this paper. A three-dimensional computational fluid dynamics (CFD) model was developed to analyze the unsteady characteristics of the self-resonating jet. The numerical model employs the mixture two-phase model, coupling the realizable turbulence model and Schnerr–Sauer cavitation model. Collected data from experimental tests were used to validate the model. Results of numerical simulations and experimental data frequency bands obtained by the Fast Fourier transform (FFT) method were in very good agreement. For better understanding the physical phenomena, the velocity, the pressure distributions, and the cavitation characteristics were investigated. The obtained results show that the sudden change of the flow velocity at the outlet of the nozzle leads to the forms of the low-pressure zone. When the pressure at the low-pressure zone is lower than the vapor pressure, the cavitation occurs. The flow field structure of the waterjet can be directly perceived through simulation, which can provide theoretical support for realizing the modulation of the erosion characteristics, optimizing nozzle structure.


Author(s):  
Philip Purcell ◽  
Fiona McEvoy ◽  
Stephen Tiernan ◽  
Derek Sweeney ◽  
Seamus Morris

Vertebral compression fractures rank among the most frequent injuries to the musculoskeletal system, with more than 1 million fractures per annum worldwide. The past decade has seen a considerable increase in the utilisation of surgical procedures such as balloon kyphoplasty to treat these injuries. While many kyphoplasty studies have examined the risk of damage to adjacent vertebra after treatment, recent case reports have also emerged to indicate the potential for the treated vertebra itself to re-collapse after surgery. The following study presents a combined experimental and computational study of balloon kyphoplasty which aims to establish a methodology capable of evaluating these cases of vertebral re-collapse. Results from both the experimental tests and computational models showed significant increases in strength and stiffness after treatment, by factors ranging from 1.44 to 1.93, respectively. Fatigue tests on treated specimens showed a 37% drop in the rate of stiffness loss compared to the untreated baseline case. Further analysis of the computational models concluded that inhibited PMMA interdigitation at the interface during kyphoplasty could reverse improvements in strength and stiffness that could otherwise be gained by the treatment.


2021 ◽  
Vol 11 (12) ◽  
pp. 5705
Author(s):  
Adrian Stuparu ◽  
Romeo Susan-Resiga ◽  
Alin Bosioc

The present study examines the possibility of using an industrial stirred chemical reactor, originally employed for liquid–liquid mixtures, for operating with two-phase liquid–solid suspensions. It is critical when obtaining a high-quality chemical product that the solid phase remains suspended in the liquid phase long enough that the chemical reaction takes place. The impeller was designed for the preparation of a chemical product with a prescribed composition. The present study aims at finding, using a numerical simulation analysis, if the performance of the original impeller is suitable for obtaining a new chemical product with a different composition. The Eulerian multiphase model was employed along with the renormalization (RNG) k-ε turbulence model to simulate liquid–solid flow with a free surface in a stirred tank. A sliding-mesh approach was used to model the impeller rotation with the commercial CFD code, FLUENT. The results obtained underline that 25% to 40% of the solid phase is sedimented on the lower part of the reactor, depending on the initial conditions. It results that the impeller does not perform as needed; hence, the suspension time of the solid phase is not long enough for the chemical reaction to be properly completed.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 954
Author(s):  
Hailong Wang ◽  
Wenping Deng ◽  
Tao Zhang ◽  
Jianhua Yao ◽  
Sujuan Wang

Material properties affect the surface finishing in ultra-precision diamond cutting (UPDC), especially for aluminum alloy 6061 (Al6061) in which the cutting-induced temperature rise generates different types of precipitates on the machined surface. The precipitates generation not only changes the material properties but also induces imperfections on the generated surface, therefore increasing surface roughness for Al6061 in UPDC. To investigate precipitate effect so as to make a more precise control for the surface quality of the diamond turned Al6061, it is necessary to confirm the compositions and material properties of the precipitates. Previous studies have indicated that the major precipitate that induces scratch marks on the diamond turned Al6061 is an AlFeSi phase with the composition of Al86.1Fe8.3Si5.6. Therefore, in this paper, to study the material properties of the AlFeSi phase and its influences on ultra-precision machining of Al6061, an elastoplastic-damage model is proposed to build an elastoplastic constitutive model and a damage failure constitutive model of Al86.1Fe8.3Si5.6. By integrating finite element (FE) simulation and JMatPro, an efficient method is proposed to confirm the physical and thermophysical properties, temperature-phase transition characteristics, as well as the stress–strain curves of Al86.1Fe8.3Si5.6. Based on the developed elastoplastic-damage parameters of Al86.1Fe8.3Si5.6, FE simulations of the scratch test for Al86.1Fe8.3Si5.6 are conducted to verify the developed elastoplastic-damage model. Al86.1Fe8.3Si5.6 is prepared and scratch test experiments are carried out to compare with the simulation results, which indicated that, the simulation results agree well with those from scratch tests and the deviation of the scratch force in X-axis direction is less than 6.5%.


2021 ◽  
pp. 095605992110222
Author(s):  
Chrysl A Aranha ◽  
Markus Hudert ◽  
Gerhard Fink

Interlocking Particle Structures (IPS) are geometrically stable assemblies, usually fabricated from plate type elements that are interconnected by slotted joints. IPS are demountable and their components have the potential to be used and reused in different structures and configurations. This paper explores the applicability of birch plywood panels, which are characterized by a high surface hardness, for this type of structural system. Experimental tests were conducted to determine the mechanical properties of birch plywood plates. Moreover, IPS connections with different geometrical properties were investigated for two different load exposures: bending and rotation. The characteristics under bending exposure are influenced by the orientation of the face-veneers. For the rotational load exposure, very small strength and stiffness properties have been identified. A linear elastic finite element model is presented that shows a wide agreement with the test results. The study serves as an initial probe into the performance of IPS structures at the component level. Various aspects that are relevant for the design of IPS, such as the assembly, the accuracy and challenges regarding digital fabrication, the durability, and the structural performance are discussed.


2012 ◽  
Vol 498 ◽  
pp. 42-54 ◽  
Author(s):  
S. Benbelaid ◽  
B. Bezzazi ◽  
A. Bezazi

This paper considers damage development mechanisms in cross-ply laminates using an accurate numerical model. Under static three points bending, two modes of damage progression in cross-ply laminates are predominated: transverse cracking and delamination. However, this second mode of damage is not accounted in our numerical model. After a general review of experimental approaches of observed behavior of laminates, the focus is laid on predicting laminate behavior based on continuum damage mechanics. In this study, a continuum damage model based on ply failure criteria is presented, which is initially proposed by Ladevèze. To reveal the effect of different stacking sequence of the laminate; such as thickness and the interior or exterior disposition of the 0° and 90° oriented layers in the laminate, an equivalent damage accumulation which cover all ply failure mechanisms has been predicted. However, the solution algorithm using finite element analysis which implements progressive failure analysis is summarized. The results of the numerical computation have been justified by the previous published experimental observations of the authors.


Sign in / Sign up

Export Citation Format

Share Document