Spatial leaf distribution and self-thinning exponent of Pinus banksiana and Populus tremuloides

Trees ◽  
2004 ◽  
Vol 18 (3) ◽  
pp. 327-338 ◽  
Author(s):  
Akira Osawa ◽  
Nahoko Kurachi
Forests ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 686 ◽  
Author(s):  
M. Quiñonez-Piñón ◽  
Caterina Valeo

The translucence and color change in wood methods, which are commonly used to differentiate sapwood from heartwood in tree cores, are compared against the microscopic analysis of wood anatomy method for determining sapwood depth. The translucence method was tested on collected wood cores of White Spruce (Picea glauca (Moench) Voss) and Jack Pine (Pinus banksiana Lamb.). The color change in wood method was tested on Trembling Aspen (Populus tremuloides Michx.). For every statistical comparison, sapwood depth values obtained with the translucence or color-change methods were significantly different from those obtained using the microscopic analysis. Using the sapwood depth values obtained with microscopy as a reference, the bias associated with the translucence or color-change methods used on Picea glauca, Pinus banksiana and Populus tremuloides constantly under- or overestimated sapwood depths within −0.3 cm to 1.6 cm; −4.9 cm to 0.5 cm; and 0 to 1.8 cm, respectively. The different ranges of over- and underestimation arise from species-specific anatomical characteristics. Estimates for the errors in sapwood depth, when the depth is measured using either the translucence or color-change methods, are presented. These relationships and research outcomes will lead to more efficient forest monitoring and improved estimates of forest water balance, which in turn will lead to improved forest management in the face of climate change.


2007 ◽  
Vol 22 (3) ◽  
pp. 163-170 ◽  
Author(s):  
Ryan J. Klos ◽  
G. Geoff Wang ◽  
Qing-Lai Dang ◽  
Ed W. East

Abstract Kozak's variable exponent taper equation was fitted for balsam poplar (Populus balsamifera L.), trembling aspen (Populus tremuloides Michx.), white spruce (Picea glauca [Moench] Voss), black spruce (Picea mariana [Mill.] B.S.P.), and jack pine (Pinus banksiana Lamb.) in Manitoba. Stem taper variability between two ecozones (i.e., Boreal Shield and Boreal Plains) were tested using the F-test. Regional differences were observed for trembling aspen, white spruce, and jack pine, and for those species, separate ecozone-specific taper equations were developed. However, the gross total volume estimates using the ecozone-specific equations were different from those of the provincial equations by only 2 percent. Although the regional difference in stem form was marginal within a province, a difference of approximately 7 percent of gross total volume estimation was found when our provincial taper equations were compared with those developed in Alberta and Saskatchewan. These results suggest that stem form variation increases with spatial scale and that a single taper equation for each species may be sufficient for each province.


1991 ◽  
Vol 71 (4) ◽  
pp. 397-410 ◽  
Author(s):  
X. J. Xiao ◽  
D. W. Anderson ◽  
J. R. Bettany

Pedogenesis and its effect on calcium (Ca), magnesium (Mg) and phosphorus (P) was studied on a sequence of seven Gray Luvisol soils in central Saskatchewan. The soils were formed on calcareous glacial till under trembling aspen (Populus tremuloides Michx), mixedwood (aspen and white spruce) (Picea glauca (Moench) Voss)) and coniferous (black spruce and jack pine) (Picea mariana (Mill) BSP and Pinus banksiana Lamb) forests. Soils under aspen had the highest concentration of total and exchangeable Ca and Mg in litter layers and Ae horizons, and had Ae and Bt horizons that were least acidic. The most acidic Ae and Bt horizons and lowest amounts of Ca and Mg occurred under coniferous forests, whereas the soils under mixedwood stands were intermediate. The thickness of eluvial (Ae and AB) horizons increased along the aspen to coniferous sequence. All soils had about 40% less P in their A and B horizons than was calculated to have been present at the start of soil formation. The greatest decrease in P was observed in the thickest and most acidic soil under coniferous forest. The present litter layers and vegetation make up only a small proportion of the P removed from the mineral soil. Unusually large amounts of P appear to have been translocated from A and B horizons during development of Gray Luvisols, in comparison to Chernozemic or even Podzolic soils. Our hypothesis proposes that P is ineffectively retained in the solum as P-clay-humus, or iron-P complexes and that organic P moves along with the soil water, laterally and downslope through permeable Ae horizon over less permeable Bt horizons, or vertically through macropores. Key words: Boreal forest, nutrient cycling, phosphorus losses, weathering, soil formation


1999 ◽  
Vol 29 (11) ◽  
pp. 1649-1659 ◽  
Author(s):  
Volker C Radeloff ◽  
David J Mladenoff ◽  
Hong S He ◽  
Mark S Boyce

Natural disturbance patterns can provide useful information for ecosystem management. Our objective was to provide a detailed spatial picture of the pre-European settlement vegetation cover for the northwestern Wisconsin Pine Barrens and to compare it with the present vegetation cover. We analyzed the presettlement conditions using an extensive data set comprised of U.S. General Land Office surveyor records from the mid-19th century and related it to the vegetation cover in 1987 as depicted in a Landsat satellite forest classification. Changes were quantified by calculating differences in abundance and relative importance of tree species at presettlement time and today. Our results revealed a strong decline of jack, red, and white pine (Pinus banksiana Lamb., Pinus resinosa Ait., and Pinus strobus L., respectively), accompanied by an increase of oak (Quercus spp.), trembling aspen (Populus tremuloides Michx.), and other hardwood species. Certain vegetation types, e.g., red pine and oak savannas, were removed from the landscape. The forest density gradient of the presettlement landscape with open savannas and woodlands in the South and denser forests in the North disappeared. These changes, especially the increase in forest cover, are ecologically significant because numerous species are adapted to open habitat, which was previously created by fire, and their populations are declining.


Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 682
Author(s):  
Feng Xu ◽  
Maryamsadat Vaziriyeganeh ◽  
Janusz J. Zwiazek

Responses of trembling aspen (Populus tremuloides), jack pine (Pinus banksiana), and white spruce (Picea glauca) seedlings to root zone pH ranging from 5 to 9 were studied in sand culture in the presence of two mineral nutrition levels. After eight weeks of treatments, effects of pH on plant dry weights varied between the plant species and were relatively minor in white spruce. Higher nutrient supply significantly increased dry weights only in trembling aspen subjected to pH 5 treatment. There was little effect of pH and nutrition level on net photosynthesis and transpiration rates in white spruce and jack pine, but net photosynthesis markedly declined in aspen at high pH. Chlorophyll concentrations in young foliage decreased the most in trembling aspen and jack pine. The effects of high pH treatments on the concentrations of Mg, P, Ca, Mn, Zn, and Fe in young foliage varied between the plant species with no significant decreases of Fe and Zn recorded in trembling aspen and white spruce, respectively. This was in contrast to earlier reports from the studies carried out in hydroponic culture. The sand culture system that we developed could be a more suitable alternative to hydroponics to study plant responses to pH in the root zone. Plant responses to high pH appear to involve complex events with a likely contribution of nutritional effects and altered water transport processes.


1988 ◽  
Vol 64 (4) ◽  
pp. 315-319 ◽  
Author(s):  
Z. Chrosciewicz

An experimental burn in conjunction with a seed-tree system was successful in regenerating jack pine (Pinus banksiana Lamb.) on a fresh to somewhat moist upland, loamy till, cutover site in central Saskatchewan. About 20 well-formed, uniformly spaced seed trees per hectare were left standing during timber harvest. The ignition of logging slash was carried out under preselected weather and fuel conditions so that favorable seedbeds and adequate seed dispersal from the seed trees were produced. Four growing seasons after burning, jack pine stocking by 4-m2 quadrats was 90% with 12 195 seedlings/ha. Aspen (Populus tremuloides Michx.), to a lesser degree black spruce (Picea mariana [Mill.] B.S.P.), and other companion tree species also regenerated with the pine. Various seedbed and regeneration characteristics as well as height growth rates are discussed. Key words: Pinus banksiana, slash burning, seed-tree system, forest regeneration, growth rates, central Saskatchewan.


2010 ◽  
Vol 40 (1) ◽  
pp. 37-47 ◽  
Author(s):  
Xavier Cavard ◽  
Yves Bergeron ◽  
Han Y.H. Chen ◽  
David Paré

This study investigates the potential of mixed forest stands as better aboveground carbon sinks than pure stands. According to the facilitation and niche complementarity hypotheses, we predict higher carbon sequestration in mature boreal mixedwoods. Aboveground carbon contents of black spruce ( Picea mariana (Mill.) Britton, Sterns, Poggenb.) and trembling aspen ( Populus tremuloides Michx.) mixtures were investigated in the eastern boreal forest, whereas jack pine ( Pinus banksiana Lamb.) and trembling aspen were used in the central boreal forest. No carbon gain was found in species mixtures; nearly pure trembling aspen stands contained the greatest amount of aboveground carbon, black spruce stands had the least, and mixtures were intermediate with amounts that could generally be predicted by linear interpolation with stem proportions. These results suggest that for aspen, the potentially detrimental effect of spruce on soils observed in other studies may be offset by greater light availability in mixtures. On the other hand, for black spruce, the potentially beneficial effects of aspen on soils could be offset by greater competition by aspen for nutrients and light. The mixture of jack pine and trembling aspen did not benefit any of these species while inducing a loss in trembling aspen carbon at the stand level.


Sign in / Sign up

Export Citation Format

Share Document