An inexact irrigation water allocation optimization model under future climate change

2018 ◽  
Vol 33 (1) ◽  
pp. 271-285 ◽  
Author(s):  
Youzhi Wang ◽  
Liu Liu ◽  
Ping Guo ◽  
Chenglong Zhang ◽  
Fan Zhang ◽  
...  
2020 ◽  
Author(s):  
Yvonne Jans ◽  
Werner von Bloh ◽  
Sibyll Schaphoff ◽  
Christoph Müller

Abstract. Being an extensively produced natural fiber on earth, cotton is of importance for economies. Although the plant is broadly adapted to varying environments, growth and irrigation water demand of cotton may be challenged by future climate change. To study the impacts of climate change on cotton productivity in different regions across the world and the irrigation water requirements related to it, we use the process-based, spatially detailed biosphere and hydrology model LPJmL. We find our modelled cotton yield levels in good agreement with reported values and simulated water consumption of cotton production similar to published estimates. Following the ISIMIP protocol, we employ an ensemble of five General Circulation Models under four Representative Concentration Pathways (RCPs) for the 2011–2099 period to simulate future cotton yields. We find that irrigated cotton production does not suffer from climate change if CO2 effects are considered, whereas rainfed production is more sensitive to varying climate conditions. Considering the overall effect of a changing climate and CO2 fertilization, cotton production on current cropland steadily increases for most of the RCPs. Starting from ~ 65 million tonnes in 2010, cotton production for RCP4.5 and RCP6.0 equates to 83 and 92 million tonnes at the end of the century, respectively. Under RCP8.5, simulated global cotton production raises by more than 50 % by 2099. Taking only climate change into account, projected cotton production considerably shrinks in most scenarios, by up to one-third or 43 million tonnes under RCP8.5. The simulation of future virtual water content (VWC) of cotton grown under elevated CO2 results for all scenarios in less VWC compared to ambient CO2 conditions. Under RCP6.0 and RCP8.5, VWC is notably decreased by more than 2000 m3 t−1 in areas where cotton is produced under purely rainfed conditions. By 2040, the average global VWC for cotton declines in all scenarios from currently 3300 to 3000 m3 t−1 and reduction continues by up to 30 % in 2100 under RCP8.5. While the VWC decreases by the CO2 effect, elevated temperature (and thus water stress) reverse the picture. Except for RCP2.6, the global VWC of cotton increase slightly but steadily under the other RCPs until mid century. RCP8.5 results in an average global VWC of more than 5000 m3 t−1 by end of the simulation period. Given the economic relevance of cotton production, climate change poses an additional stress and deserves special attention. Changes in VWC and water demands for cotton production are of special importance, as cotton production is known for its intense water consumption that led, e.g., to the loss of most of the Aral sea. The implications of climate impacts on cotton production on the one hand, and the impact of cotton production on water resources on the other hand illustrate the need to assess how future climate change may affect cotton production and its resource requirements. The inclusion of cotton in LPJmL allows for various large-scale studies to assess impacts of climate change on hydrological factors and the implications for agricultural production and carbon sequestration.


Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1715
Author(s):  
Soha M. Mostafa ◽  
Osama Wahed ◽  
Walaa Y. El-Nashar ◽  
Samia M. El-Marsafawy ◽  
Martina Zeleňáková ◽  
...  

This paper presents a comprehensive study to assess the impact of climate change on Egypt’s water resources, focusing on irrigation water for agricultural crops, considering that the agriculture sector is the largest consumer of water in Egypt. The study aims to estimate future climate conditions using general circulation models (GCMs), to assess the impact of climate change and temperature increase on water demands for irrigation using the CROPWAT 8 model, and to determine the suitable irrigation type to adapt with future climate change. A case study was selected in the Middle part of Egypt. The study area includes Giza, Bani-Sweif, Al-Fayoum, and Minya governorates. The irrigation water requirements for major crops under current weather conditions and future climatic changes were estimated. Under the conditions of the four selected models CCSM-30, GFDLCM20, GFDLCM21, and GISS-EH, as well as the chosen scenario of A1BAIM, climate model (MAGICC/ScenGen) was applied in 2050 and 2100 to estimate the potential rise in the annual mean temperature in Middle Egypt. The results of the MAGICC/SceGen model indicated that the potential rise in temperature in the study area will be 2.12 °C in 2050, and 3.96 °C in 2100. The percentage of increase in irrigation water demands for winter crops under study ranged from 6.1 to 7.3% in 2050, and from 11.7 to 13.2% in 2100. At the same time, the increase in irrigation water demands for summer crops ranged from 4.9 to 5.8% in 2050, and from 9.3 to 10.9% in 2100. For Nili crops, the increase ranged from 5.0 to 5.1% in 2050, and from 9.6 to 9.9% in 2100. The increase in water demands due to climate change will affect the water security in Egypt, as the available water resources are limited, and population growth is another challenge which requires a proper management of water resources.


2021 ◽  
Vol 25 (4) ◽  
pp. 2027-2044
Author(s):  
Yvonne Jans ◽  
Werner von Bloh ◽  
Sibyll Schaphoff ◽  
Christoph Müller

Abstract. Being an extensively produced natural fiber on earth, cotton is of importance for economies. Although the plant is broadly adapted to varying environments, the growth of and irrigation water demand on cotton may be challenged by future climate change. To study the impacts of climate change on cotton productivity in different regions across the world and the irrigation water requirements related to it, we use the process-based, spatially detailed biosphere and hydrology model LPJmL (Lund–Potsdam–Jena managed land). We find our modeled cotton yield levels in good agreement with reported values and simulated water consumption of cotton production similar to published estimates. Following the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) protocol, we employ an ensemble of five general circulation models under four representative concentration pathways (RCPs) for the 2011–2099 period to simulate future cotton yields. We find that irrigated cotton production does not suffer from climate change if CO2 effects are considered, whereas rainfed production is more sensitive to varying climate conditions. Considering the overall effect of a changing climate and CO2 fertilization, cotton production on current cropland steadily increases for most of the RCPs. Starting from ∼65 million tonnes in 2010, cotton production for RCP4.5 and RCP6.0 equates to 83 and 92 million tonnes at the end of the century, respectively. Under RCP8.5, simulated global cotton production rises by more than 50 % by 2099. Taking only climate change into account, projected cotton production considerably shrinks in most scenarios, by up to one-third or 43 million tonnes under RCP8.5. The simulation of future virtual water content (VWC) of cotton grown under elevated CO2 results for all scenarios in less VWC compared to ambient CO2 conditions. Under RCP6.0 and RCP8.5, VWC is notably decreased by more than 2000 m3 t−1 in areas where cotton is produced under purely rainfed conditions. By 2040, the average global VWC for cotton declines in all scenarios from currently 3300 to 3000 m3 t−1, and reduction continues by up to 30 % in 2100 under RCP8.5. While the VWC decreases by the CO2 effect, elevated temperature acts in the opposite direction. Ignoring beneficial CO2 effects, global VWC of cotton would increase for all RCPs except RCP2.6, reaching more than 5000 m3 t−1 by the end of the simulation period under RCP8.5. Given the economic relevance of cotton production, climate change poses an additional stress and deserves special attention. Changes in VWC and water demands for cotton production are of special importance, as cotton production is known for its intense water consumption. The implications of climate impacts on cotton production on the one hand and the impact of cotton production on water resources on the other hand illustrate the need to assess how future climate change may affect cotton production and its resource requirements. Our results should be regarded as optimistic, because of high uncertainty with respect to CO2 fertilization and the lack of implementing processes of boll abscission under heat stress. Still, the inclusion of cotton in LPJmL allows for various large-scale studies to assess impacts of climate change on hydrological factors and the implications for agricultural production and carbon sequestration.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2125
Author(s):  
Jaenam Lee ◽  
Hyungjin Shin

Drought has been frequently occurring in South Korea due to climate change. Analyzing the water supply capacity of the water resource system provides essential information for water resource management. This study evaluates the future water supply capacity of the Gwanghye (GH) agricultural reservoir based on the representative concentration pathways 4.5 and 8.5 climate change scenarios. We performed a reservoir simulation by reflecting the full water level of the reservoir before and after reservoir heightening. Climate change is expected to decrease the GH reservoir’s future available water resources due to the overall reduction in the reservoir’s runoff. After the reservoir-heightening project, an overall improvement was observed in the stability of the future irrigation water supply. Moreover, the remaining water after the supply of the irrigation water could supply 0.6–7.2 × 103 m3 of daily instream water. Thus, flexible reservoir operations are necessary according to climate change scenarios and the reservoir operation period. The use of climate change information should be expanded to establish reasonable water management policies for future climate change scenarios.


Sign in / Sign up

Export Citation Format

Share Document