scholarly journals In silico and expression analyses of fasciclin-like arabinogalactan proteins reveal functional conservation during embryo and seed development

2019 ◽  
Vol 32 (4) ◽  
pp. 353-370 ◽  
Author(s):  
Mário Costa ◽  
Ana Marta Pereira ◽  
Sara Cristina Pinto ◽  
Jessy Silva ◽  
Luís Gustavo Pereira ◽  
...  

Key message The fasciclin-like arabinogalactan proteins organization into four groups is conserved and may be related to specific roles in developmental processes across angiosperms. Abstract Fasciclin-like arabinogalactan proteins (FLAs) are a subclass of arabinogalactan proteins (AGPs), which contain fasciclin-like domains in addition to typical AGP domains. FLAs are present across all embryophytes, and despite their low overall sequence similarity, conserved regions that define the fasciclin functional domain (FAS) have been identified, suggesting that the cell adhesion property is also conserved. FLAs in Arabidopsis have been organized into four subgroups according to the number and distribution of functional domains. Recent studies associated FLAs with cell wall-related processes where domain organization seemed to be related to functional roles. In Arabidopsis, FLAs containing a single FAS domain were found to be important for the integrity and elasticity of the plant cell wall matrix, and FLAs with two FAS domains and two AGP domains were found to be involved in maintaining proper cell expansion under salt stress conditions. The main purpose of the present work was to elucidate the expression pattern of selected FLA genes during embryo and seed development using RT-qPCR. AtFLA8 and AtFLA10, two Arabidopsis genes that stood out in previous microarray studies of embryo development, were further examined using promoter-driven gene reporter analyses. We also studied the expression of cork oak FLA genes and found that their expression partially parallels the expression patterns of the putative AtFLA orthologs. We propose that the functional organization of FLAs is conserved and may be related to fundamental aspects of embryogenesis and seed development across angiosperms. Phylogenetic studies were performed, and we show that the same basic four-subgroup organization described for Arabidopsis FLA gene classification is valid for most Arabidopsis FLA orthologs of several plant species, namely poplar, corn and cork oak.

Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 755
Author(s):  
Angyan Ren ◽  
Rana Ahmed ◽  
Huanyu Chen ◽  
Linhe Han ◽  
Jinhao Sun ◽  
...  

Cell walls are basically complex with dynamic structures that are being involved in several growth and developmental processes, as well as responses to environmental stresses and the defense mechanism. Pectin is secreted into the cell wall in a highly methylesterified form. It is able to perform function after the de-methylesterification by pectin methylesterase (PME). Whereas, the pectin methylesterase inhibitor (PMEI) plays a key role in plant cell wall modification through inhibiting the PME activity. It provides pectin with different levels of degree of methylesterification to affect the cell wall structures and properties. The PME activity was analyzed in six tissues of Sorghum bicolor, and found a high level in the leaf and leaf sheath. PMEI families have been identified in many plant species. Here, a total of 55 pectin methylesterase inhibitor genes (PMEIs) were identified from S. bicolor whole genome, a more detailed annotation of this crop plant as compared to the previous study. Chromosomal localization, gene structures and sequence characterization of the PMEI family were analyzed. Moreover, cis-acting elements analysis revealed that each PMEI gene was regulated by both internal and environmental factors. The expression patterns of each PMEI gene were also clustered according to expression pattern analyzed in 47 tissues under different developmental stages. Furthermore, some SbPMEIs were induced when treated with hormonal and abiotic stress. Taken together, these results laid a strong foundation for further study of the functions of SbPMEIs and pectin modification during plant growth and stress responses of cereal.


2020 ◽  
Vol 11 ◽  
Author(s):  
Tayebeh Abedi ◽  
Romain Castilleux ◽  
Pieter Nibbering ◽  
Totte Niittylä

Plant cell wall associated hydroxyproline-rich glycoproteins (HRGPs) are involved in several aspects of plant growth and development, including wood formation in trees. HRGPs such as arabinogalactan-proteins (AGPs), extensins (EXTs), and proline rich proteins (PRPs) are important for the development and architecture of plant cell walls. Analysis of publicly available gene expression data revealed that many HRGP encoding genes show tight spatio-temporal expression patterns in the developing wood of Populus that are indicative of specific functions during wood formation. Similar results were obtained for the expression of glycosyl transferases putatively involved in HRGP glycosylation. In situ immunolabelling of transverse wood sections using AGP and EXT antibodies revealed the cell type specificity of different epitopes. In mature wood AGP epitopes were located in xylem ray cell walls, whereas EXT epitopes were specifically observed between neighboring xylem vessels, and on the ray cell side of the vessel walls, likely in association with pits. Molecular mass and glycan analysis of AGPs and EXTs in phloem/cambium, developing xylem, and mature xylem revealed clear differences in glycan structures and size between the tissues. Separation of AGPs by agarose gel electrophoresis and staining with β-D-glucosyl Yariv confirmed the presence of different AGP populations in phloem/cambium and xylem. These results reveal the diverse changes in HRGP-related processes that occur during wood formation at the gene expression and HRGP glycan biosynthesis levels, and relate HRGPs and glycosylation processes to the developmental processes of wood formation.


2018 ◽  
Vol 84 (11) ◽  
Author(s):  
Sara Casado López ◽  
Mao Peng ◽  
Tedros Yonatan Issak ◽  
Paul Daly ◽  
Ronald P. de Vries ◽  
...  

ABSTRACTFungi can decompose plant biomass into small oligo- and monosaccharides to be used as carbon sources. Some of these small molecules may induce metabolic pathways and the production of extracellular enzymes targeted for degradation of plant cell wall polymers. Despite extensive studies in ascomycete fungi, little is known about the nature of inducers for the lignocellulolytic systems of basidiomycetes. In this study, we analyzed six sugars known to induce the expression of lignocellulolytic genes in ascomycetes for their role as inducers in the basidiomycete white-rot fungusDichomitus squalensusing a transcriptomic approach. This identified cellobiose andl-rhamnose as the main inducers of cellulolytic and pectinolytic genes, respectively, ofD. squalens. Our results also identified differences in gene expression patterns between dikaryotic and monokaryotic strains ofD. squalenscultivated on plant biomass-derived monosaccharides and the disaccharide cellobiose. This suggests that despite conservation of the induction between these two genetic forms ofD. squalens, the fine-tuning in the gene regulation of lignocellulose conversion is differently organized in these strains.IMPORTANCEWood-decomposing basidiomycete fungi have a major role in the global carbon cycle and are promising candidates for lignocellulosic biorefinery applications. However, information on which components trigger enzyme production is currently lacking, which is crucial for the efficient use of these fungi in biotechnology. In this study, transcriptomes of the white-rot fungusDichomitus squalensfrom plant biomass-derived monosaccharide and cellobiose cultures were studied to identify compounds that induce the expression of genes involved in plant biomass degradation.


2021 ◽  
Author(s):  
Mariana Santos ◽  
Mário Lúcio Resende ◽  
Bárbara Santos Ciscon ◽  
Natália Freitas ◽  
Matheus Pereira ◽  
...  

Pathogen‐associated molecular patterns (PAMPs) are recognized by pattern recognition receptors (PRRs) localized on the host plant cell wall.  These receptors activate a broad-spectrum and durable defense, which are desired characteristics for disease resistance in plant breeding programs. In this study, candidate sequences for PRRs with lysin motifs (LysM) were investigated in the Coffea arabica genome. For this, approaches based on the principle of sequence similarity, conservation of motifs and domains, phylogenetic analysis, and modulation of gene expression in response to Hemileia vastatrix were used. The candidate sequences for PRRs in C. arabica ( Ca1-LYP , Ca2-LYP , Ca1-CERK1 , Ca2-CERK1 , Ca-LYK4 , Ca1-LYK5 and Ca2-LYK5 ) showed high similarity with the reference PRRs used: Os-CEBiP , At-CERK1 , At-LYK4 and At-LYK5 . Moreover, the ectodomains of these sequences showed high identity or similarity with the reference sequences, indicating structural and functional conservation. The studied sequences are also phylogenetically related to the reference PRRs described in Arabidopsis, rice, and other plant species. All candidates for receptors had their expression induced after the inoculation with H. vastatrix , since the first time of sampling at 6 hours post‐inoculation (hpi). At 24 hpi, there was a significant increase in expression, for most of the receptors evaluated, and at 48 hpi, a suppression. The results showed that the candidate sequences for PRRs in the C. arabica genome display high homology with fungal PRRs already described in the literature. Besides, they respond to pathogen inoculation and seem to be involved in the perception or signaling of fungal chitin, acting as receptors or coreceptors of this molecule. These findings represent an advance in the understanding of the basal immunity of this species.


2018 ◽  
Vol 1 ◽  
pp. 25-33 ◽  
Author(s):  
Li Tan ◽  
David Tees ◽  
Jin Qian ◽  
Sulaiman Kareem ◽  
Marcia J. Kieliszewski

2017 ◽  
Vol 163 ◽  
pp. 227-235 ◽  
Author(s):  
Desirée Bartels ◽  
Alexander Baumann ◽  
Malte Maeder ◽  
Thomas Geske ◽  
Esther Marie Heise ◽  
...  

Microbiology ◽  
2020 ◽  
Vol 166 (11) ◽  
pp. 1007-1018 ◽  
Author(s):  
Delia A. Narváez-Barragán ◽  
Omar E. Tovar-Herrera ◽  
Lorenzo Segovia ◽  
Mario Serrano ◽  
Claudia Martinez-Anaya

Expansins, cerato-platanins and swollenins (which we will henceforth refer to as expansin-related proteins) are a group of microbial proteins involved in microbe-plant interactions. Although they share very low sequence similarity, some of their composing domains are near-identical at the structural level. Expansin-related proteins have their target in the plant cell wall, in which they act through a non-enzymatic, but still uncharacterized, mechanism. In most cases, mutagenesis of expansin-related genes affects plant colonization or plant pathogenesis of different bacterial and fungal species, and thus, in many cases they are considered virulence factors. Additionally, plant treatment with expansin-related proteins activate several plant defenses resulting in the priming and protection towards subsequent pathogen encounters. Plant-defence responses induced by these proteins are reminiscent of pattern-triggered immunity or hypersensitive response in some cases. Plant immunity to expansin-related proteins could be caused by the following: (i) protein detection by specific host-cell receptors, (ii) alterations to the cell-wall-barrier properties sensed by the host, (iii) displacement of cell-wall polysaccharides detected by the host. Expansin-related proteins may also target polysaccharides on the wall of the microbes that produced them under certain physiological instances. Here, we review biochemical, evolutionary and biological aspects of these relatively understudied proteins and different immune responses they induce in plant hosts.


2006 ◽  
Vol 33 (9) ◽  
pp. 811 ◽  
Author(s):  
Yong Liu ◽  
Dongcheng Liu ◽  
Haiying Zhang ◽  
Hongbo Gao ◽  
Xiaoli Guo ◽  
...  

The plant cell wall-associated kinase (WAK) and WAK-like kinase (WAKL) make up a unique group in the receptor-like protein kinase (RLK) superfamily. Previous studies on Arabidopsis have revealed that the WAK gene family members play an important role in both cell elongation and stress response signalling. Here we show that four putative WAKs (TaWAK1, TaWAKL2, TaWAKL3, and TaWAK4) and two WAKLs (TaWAKL1 and TaWAKL2) were isolated from wheat based on the DNA sequence similarity and the protein structure conservation of Arabidopsis WAKs genes. TaWAK1, TaWAK2, TaWAK3 and TaWAKL1 each encode a putative intact protein with the characteristic of the WAK / WAKL gene family members, except for the abbreviated TaWAK4 and TaWAKL2 which were caused by nucleotide mutation and alternative splicing, respectively. Southern analysis revealed that TaWAKL1, TaWAK1, TaWAK2 and TaWAK3 are all multiple-copy members. Real-time PCR analysis revealed that the TaWAK1 and TaWAK3 displayed similar expression patterns, while expressions of TaWAKL1, TaWAKL2, and TaWAK2 were organ specific. Further, we analysed the conservation of introns and intron–exon structure and the putative protein structures between wheat and Arabidopsis, which showed the putative wheat WAKs are different from those of Arabidopsis and make up a new subgroup in the polygenetic tree.


Sign in / Sign up

Export Citation Format

Share Document