Design of sliding mode controller for sensor/actuator fault with unknown input observer for satellite control system

2021 ◽  
Author(s):  
Muhammad Shamrooz Aslam ◽  
Irfan Qaisar ◽  
Abdul Majid ◽  
Perumal Ramaraj
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Farong Kou ◽  
Jianghao Wu ◽  
Jian Gao ◽  
Dapeng Wu ◽  
Ruochen Chen

In order to improve the ride comfort and handling stability of the vehicle and realize the recovery of vibration energy, an electromagnetic linear hybrid suspension actuator composed of linear motor and solenoid valve shock absorber is proposed. At the same time, a fault diagnosis and fault-tolerant control strategy is designed to solve the system instability caused by the fault of electromagnetic hybrid active suspension. The 1/4 vehicle two-degree-of freedom suspension model, the linear motor mathematical model, and the solenoid valve shock absorber test model are established. In this paper, the fuzzy sliding mode controller is used as the controller and the unknown input observer is used to estimate the state of the suspension. According to the residual obtained from the unknown input observer and compared with the residual threshold, the suspension fault is determined. In the case of fault, the fuzzy sliding mode controller is used to compensate the force and realize the suspension fault-tolerant control. The performance of the suspension is simulated on random road and bumped road, respectively. The simulation results show that the fault-tolerant control effect of the three performance indexes of the suspension is good, and the ride comfort and safety of the suspension are improved. Finally, the bench test is carried out, and the test results show that in the fault-tolerant control state, the root mean square value of the sprung mass acceleration is reduced by 31.69% compared with the fault state and the dynamic performance of the suspension is improved.


Author(s):  
Bambang L. Widjiantoro ◽  
Katherin Indriawati

This paper proposes a scheme to improve regenerative ABS technology that already exists today by adding accommodation faults to the control system. The nominal control algorithm used is a sliding mode control so that system nonlinearities can be handled properly. The proposed method then is called sensor/actuator fault tolerant sliding mode control system. In designing the proposed control, there are two stages, namely estimation of faults, as well as the active mechanism for reconfiguring controls. Estimation of faults is done by using proportional-integral (PI) observers based on extended state space equation. Whereas the control signal reconfiguration is done actively by replacing measured output with their estimates and compensating for control signal using the actuator fault estimate. The simulation shows that the control system based on the proposed algorithm produces better dynamic performance than the sliding mode control (SMC) without fault tolerant feature. Furthermore, the system provides inherent characteristic for dealing with a minor fault in the hydraulic actuator.


2021 ◽  
Author(s):  
Muhammad Shamrooz Aslam ◽  
Irfan Qaisar

Abstract In this paper, the mechanism for estimation of the sensor and actuator faulty control problem for the class of nonlinear systems is investigated. The Lipschitz conditions and system uncertainties also considered. By implementing the sliding mode observer (SMO) method, initially, we introduced the transformation scheme to make the system rational. In which we split our system into two parts such that the actuator fault function has only happened in the second state vector of nonlinear dynamics. Based on the Lyapunov stability theory and appropriate inequality, some sufficient criteria in the form of linear matrix inequalities are obtained to ensure the bounded stability for the prescribed H∞ performance level. In addition, the designed algorithm for actuator fault is further applied for the sensor fault.


2011 ◽  
Vol 34 (4) ◽  
pp. 388-400 ◽  
Author(s):  
A Zargari ◽  
R Hooshmand ◽  
M Ataei

One of the main problems in small hydro-power plants that are locally used is their frequency control system. In this paper, a suggested control system based on the fuzzy sliding mode controller is presented for controlling the network frequency. Also, the proposed control strategy is compared with a PI controller and conventional sliding mode controller. In order to regulate the membership functions of fuzzy system more accurately, the particle swarm optimization algorithm is also applied. Moreover, because of unavailability of the control system variables, an estimator is suggested for estimating and identifying the system variables. This estimator will reduce the costs of implementing the control method. The simulation results show the ability of controller system in controlling the local network frequency in the presence of load and parameter’s variations.


Author(s):  
Trong-Thang Nguyen

In this research, the author presents the model of the two-link robot arm and its dynamic equations. Based on these dynamic equations, the author builds the sliding mode controller for each joint of the robot. The tasks of the controllers are controlling the Torque in each Joint of the robot in order that the angle coordinates of each link coincide with the desired values. The proposed algorithm and robot model are built on Matlab-Simulink to investigate the system quality. The results show that the quality of the control system is very high: the response angles of each link quickly reach the desired values, and the static error equal to zero.


Sign in / Sign up

Export Citation Format

Share Document