scholarly journals Convolutional neural networks for global human settlements mapping from Sentinel-2 satellite imagery

Author(s):  
Christina Corbane ◽  
Vasileios Syrris ◽  
Filip Sabo ◽  
Panagiotis Politis ◽  
Michele Melchiorri ◽  
...  

Abstract Spatially consistent and up-to-date maps of human settlements are crucial for addressing policies related to urbanization and sustainability, especially in the era of an increasingly urbanized world. The availability of open and free Sentinel-2 data of the Copernicus Earth Observation program offers a new opportunity for wall-to-wall mapping of human settlements at a global scale. This paper presents a deep-learning-based framework for a fully automated extraction of built-up areas at a spatial resolution of 10 m from a global composite of Sentinel-2 imagery. A multi-neuro modeling methodology building on a simple Convolution Neural Networks architecture for pixel-wise image classification of built-up areas is developed. The core features of the proposed model are the image patch of size 5 × 5 pixels adequate for describing built-up areas from Sentinel-2 imagery and the lightweight topology with a total number of 1,448,578 trainable parameters and 4 2D convolutional layers and 2 flattened layers. The deployment of the model on the global Sentinel-2 image composite provides the most detailed and complete map reporting about built-up areas for reference year 2018. The validation of the results with an independent reference dataset of building footprints covering 277 sites across the world establishes the reliability of the built-up layer produced by the proposed framework and the model robustness. The results of this study contribute to cutting-edge research in the field of automated built-up areas mapping from remote sensing data and establish a new reference layer for the analysis of the spatial distribution of human settlements across the rural–urban continuum.

2020 ◽  
Vol 3 (1) ◽  
pp. 445-454
Author(s):  
Celal Buğra Kaya ◽  
Alperen Yılmaz ◽  
Gizem Nur Uzun ◽  
Zeynep Hilal Kilimci

Pattern classification is related with the automatic finding of regularities in dataset through the utilization of various learning techniques. Thus, the classification of the objects into a set of categories or classes is provided. This study is undertaken to evaluate deep learning methodologies to the classification of stock patterns. In order to classify patterns that are obtained from stock charts, convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long-short term memory networks (LSTMs) are employed. To demonstrate the efficiency of proposed model in categorizing patterns, hand-crafted image dataset is constructed from stock charts in Istanbul Stock Exchange and NASDAQ Stock Exchange. Experimental results show that the usage of convolutional neural networks exhibits superior classification success in recognizing patterns compared to the other deep learning methodologies.


Author(s):  
Pham Van Hai ◽  
Samson Eloanyi Amaechi

Conventional methods used in brain tumors detection, diagnosis, and classification such as magnetic resonance imaging and computed tomography scanning technologies are unbridged in their results. This paper presents a proposed model combination, convolutional neural networks with fuzzy rules in the detection and classification of medical imaging such as healthy brain cell and tumors brain cells. This model contributes fully on the automatic classification and detection medical imaging such as brain tumors, heart diseases, breast cancers, HIV and FLU. The experimental result of the proposed model shows overall accuracy of 97.6%, which indicates that the proposed method achieves improved performance than the other current methods in the literature such as [classification of tumors in human brain MRI using wavelet and support vector machine 94.7%, and deep convolutional neural networks with transfer learning for automated brain image classification 95.0%], uses in the detection, diagnosis, and classification of medical imaging decision supports.


2021 ◽  
Author(s):  
Rajagopal T K P ◽  
Sakthi G ◽  
Prakash J

Abstract Hyperspectral remote sensing based image classification is found to be a very widely used method employed for scene analysis that is from a remote sensing data which is of a high spatial resolution. Classification is a critical task in the processing of remote sensing. On the basis of the fact that there are different materials with reflections in a particular spectral band, all the traditional pixel-wise classifiers both identify and also classify all materials on the basis of their spectral curves (or pixels). Owing to the dimensionality of the remote sensing data of high spatial resolution along with a limited number of labelled samples, a remote sensing image of a high spatial resolution tends to suffer from something known as the Hughes phenomenon which can pose a serious problem. In order to overcome such a small-sample problem, there are several methods of learning like the Support Vector Machine (SVM) along with the other methods that are kernel based and these were introduced recently for a remote sensing classification of the image and this has shown a good performance. For the purpose of this work, an SVM along with Radial Basis Function (RBF) method was proposed. But, a feature learning approach for the classification of the hyperspectral image is based on the Convolutional Neural Networks (CNNs). The results of the experiment that were based on various image datasets that were hyperspectral which implies that the method proposed will be able to achieve a better performance of classification compared to other traditional methods like the SVM and the RBF kernel and also all conventional methods based on deep learning (CNN).


2020 ◽  
Vol 10 (8) ◽  
pp. 2929 ◽  
Author(s):  
Ibrahem Kandel ◽  
Mauro Castelli

Histopathology is the study of tissue structure under the microscope to determine if the cells are normal or abnormal. Histopathology is a very important exam that is used to determine the patients’ treatment plan. The classification of histopathology images is very difficult to even an experienced pathologist, and a second opinion is often needed. Convolutional neural network (CNN), a particular type of deep learning architecture, obtained outstanding results in computer vision tasks like image classification. In this paper, we propose a novel CNN architecture to classify histopathology images. The proposed model consists of 15 convolution layers and two fully connected layers. A comparison between different activation functions was performed to detect the most efficient one, taking into account two different optimizers. To train and evaluate the proposed model, the publicly available PatchCamelyon dataset was used. The dataset consists of 220,000 annotated images for training and 57,000 unannotated images for testing. The proposed model achieved higher performance compared to the state-of-the-art architectures with an AUC of 95.46%.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3601
Author(s):  
Ali Jamali ◽  
Masoud Mahdianpari ◽  
Fariba Mohammadimanesh ◽  
Brian Brisco ◽  
Bahram Salehi

Due to anthropogenic activities and climate change, many natural ecosystems, especially wetlands, are lost or changing at a rapid pace. For the last decade, there has been increasing attention towards developing new tools and methods for the mapping and classification of wetlands using remote sensing. At the same time, advances in artificial intelligence and machine learning, particularly deep learning models, have provided opportunities to advance wetland classification methods. However, the developed deep and very deep algorithms require a higher number of training samples, which is costly, logistically demanding, and time-consuming. As such, in this study, we propose a Deep Convolutional Neural Network (DCNN) that uses a modified architecture of the well-known DCNN of the AlexNet and a Generative Adversarial Network (GAN) for the generation and classification of Sentinel-1 and Sentinel-2 data. Applying to an area of approximately 370 sq. km in the Avalon Peninsula, Newfoundland, the proposed model with an average accuracy of 92.30% resulted in F-1 scores of 0.82, 0.85, 0.87, 0.89, and 0.95 for the recognition of swamp, fen, marsh, bog, and shallow water, respectively. Moreover, the proposed DCNN model improved the F-1 score of bog, marsh, fen, and swamp wetland classes by 4%, 8%, 11%, and 26%, respectively, compared to the original CNN network of AlexNet. These results reveal that the proposed model is highly capable of the generation and classification of Sentinel-1 and Sentinel-2 wetland samples and can be used for large-extent classification problems.


2018 ◽  
Vol 34 (4) ◽  
pp. 2273-2285 ◽  
Author(s):  
Mehmet Emin Yuksel ◽  
Nurcan Sarikaya Basturk ◽  
Hasan Badem ◽  
Abdullah Caliskan ◽  
Alper Basturk

Sign in / Sign up

Export Citation Format

Share Document