The gradient flow for gauged harmonic map in dimension two II

2013 ◽  
Vol 50 (3-4) ◽  
pp. 883-924 ◽  
Author(s):  
Yong Yu
Keyword(s):  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
James Kohout ◽  
Melanie Rupflin ◽  
Peter M. Topping

AbstractThe harmonic map energy of a map from a closed, constant-curvature surface to a closed target manifold can be seen as a functional on the space of maps and domain metrics. We consider the gradient flow for this energy. In the absence of singularities, previous theory established that the flow converges to a branched minimal immersion, but only at a sequence of times converging to infinity, and only after pulling back by a sequence of diffeomorphisms. In this paper, we investigate whether it is necessary to pull back by these diffeomorphisms, and whether the convergence is uniform as {t\to\infty}.


2021 ◽  
Vol 143 (4) ◽  
pp. 1261-1335
Author(s):  
Yannick Sire ◽  
Juncheng Wei ◽  
Youquan Zheng

2021 ◽  
Vol 15 ◽  
pp. 174830262110113
Author(s):  
Qianying Hong ◽  
Ming-jun Lai ◽  
Jingyue Wang

We present a convergence analysis for a finite difference scheme for the time dependent partial different equation called gradient flow associated with the Rudin-Osher-Fetami model. We devise an iterative algorithm to compute the solution of the finite difference scheme and prove the convergence of the iterative algorithm. Finally computational experiments are shown to demonstrate the convergence of the finite difference scheme.


Author(s):  
Ahmad Afuni

AbstractWe establish new local regularity results for the harmonic map and Yang–Mills heat flows on Riemannian manifolds of dimension greater than 2 and 4, respectively, obtaining criteria for the smooth local extensibility of these flows. As a corollary, we obtain new characterisations of singularity formation and use this to obtain a local estimate on the Hausdorff measure of the singular sets of these flows at the first singular time. Finally, we show that smooth blow-ups at rapidly forming singularities of these flows are necessarily nontrivial and admit a positive lower bound on their heat ball energies. These results crucially depend on some local monotonicity formulæ for these flows recently established by Ecker (Calc Var Partial Differ Equ 23(1):67–81, 2005) and the Afuni (Calc Var 555(1):1–14, 2016; Adv Calc Var 12(2):135–156, 2019).


Author(s):  
Alexander Mielke

AbstractWe consider a non-negative and one-homogeneous energy functional $${{\mathcal {J}}}$$ J on a Hilbert space. The paper provides an exact relation between the solutions of the associated gradient-flow equations and the energetic solutions generated via the rate-independent system given in terms of the time-dependent functional $${{\mathcal {E}}}(t,u)= t {{\mathcal {J}}}(u)$$ E ( t , u ) = t J ( u ) and the norm as a dissipation distance. The relation between the two flows is given via a solution-dependent reparametrization of time that can be guessed from the homogeneities of energy and dissipations in the two equations. We provide several examples including the total-variation flow and show that equivalence of the two systems through a solution dependent reparametrization of the time. Making the relation mathematically rigorous includes a careful analysis of the jumps in energetic solutions which correspond to constant-speed intervals for the solutions of the gradient-flow equation. As a major result we obtain a non-trivial existence and uniqueness result for the energetic rate-independent system.


Author(s):  
Christine Breiner ◽  
Chikako Mese

Abstract Let S be a surface with a metric d satisfying an upper curvature bound in the sense of Alexandrov (i.e. via triangle comparison). We show that an almost conformal harmonic map from a surface into ( S , d ) {(S,d)} is a branched covering. As a consequence, if ( S , d ) {(S,d)} is homeomorphically equivalent to the 2-sphere 𝕊 2 {\mathbb{S}^{2}} , then it is conformally equivalent to 𝕊 2 {\mathbb{S}^{2}} .


Author(s):  
Frederic Alberti

AbstractIt is well known that the classical recombination equation for two parent individuals is equivalent to the law of mass action of a strongly reversible chemical reaction network, and can thus be reformulated as a generalised gradient system. Here, this is generalised to the case of an arbitrary number of parents. Furthermore, the gradient structure of the backward-time partitioning process is investigated.


Nonlinearity ◽  
2020 ◽  
Vol 33 (6) ◽  
pp. 2756-2796
Author(s):  
Paweł Biernat ◽  
Yukihiro Seki

Sign in / Sign up

Export Citation Format

Share Document