Higher Himalayan Shear Zone, Sutlej section: structural geology and extrusion mechanism by various combinations of simple shear, pure shear and channel flow in shifting modes

2009 ◽  
Vol 99 (6) ◽  
pp. 1267-1303 ◽  
Author(s):  
Soumyajit Mukherjee ◽  
Hemin A. Koyi
1995 ◽  
Vol 117 (3) ◽  
pp. 269-277 ◽  
Author(s):  
Fuh-Kuo Chen

The shear properties of different simple-shear sheet specimens were investigated using the elastic-plastic finite element method. Tension loaded specimens with a shear zone formed at the center area between two transverse slots were adopted to analyze the shear properties of sheet metals under uniaxial tension. Specimens prepared by single material as well as by bonding two different strength materials together were both studied. Since the shear zone could not be kept free from bending stress during loading, the pure shear deformation was not possibly obtained. However, by varying the shape and the location of the slots, an optimum geometry of the shear zone which yields a nearly pure shear deformation in the plastic range was determined through the finite element analysis. The results also revealed when the shear zone was formed by a low strength material which was bonded on each side with a higher strength material, a nearly pure shear deformation could be obtained even in the elastic range.


Author(s):  
Thirukumaran V ◽  
Biswal T.K ◽  
Sundaralingam K ◽  
Sowmya V ◽  
Boopathi S ◽  
...  

This study aims to investigate the petrography and strain pattern of mylonites from parts of N-S trending Sitampundi-Kanjamalai Shear Zone (SKSZ) around Thiruchengode. The petrographic study indicates the presence of recrystallized quartz, K-feldspar, plagioclase, biotite and some hornblende. The kinematic analysis of Mylonites was done with the help of shear sense indicators such as recrystallized type quartz (quartz ribbon) around the cluster of feldspar, S-C fabric shows dextral shear sense and some sinisterly shear sense in some parts of SASZ which can be considered as a product of partitioning of both strain and vorticity between domains. These all indicates the simple shear extension along E-W direction and the mylonitic foliation shows the pure shear compression along N-S direction. Further the study of bulk strain analysis by Flinn plot method using L and T section of mylonite shows k<1 which lies in the field of flattening zone of finite strain. The kinematic vorticity number is calculated by Rxz/β method which gives the value of 0.36 indicating the general shear. The rigid grain graph shows that the pure shear component is more ­­­­dominant than the simple shear component. The analysis leads to the conclusion that the mylonite has experienced a high temperature shearing of above 700°cat deep crustal level.


2000 ◽  
Vol 137 (1) ◽  
pp. 81-96 ◽  
Author(s):  
P. XYPOLIAS ◽  
T. DOUTSOS

Combined shear-sense criteria, finite-strain data and vorticity analyses were used to study the deformation path in a curved crustal-scale shear zone (Phyllite–Quartzite Series) of the southwestern Hellenides. The results are combined with data on the structural evolution of a cover nappe (Pindos thrust belt) to provide new insights into the orogenic evolution of this region.Ductile deformation within the Phyllite–Quartzite Series was associated with a top-to-the-west-southwest shearing and was partitioned into two structural domains: a root zone and a frontal domain. The root zone is characterized by vertical coaxial stretching, high strain and upward movement of the material, while the frontal domain comprises simple-shear deformation at the base and pure shear at the top. This pattern suggests superposition of pure shear on simple-shear deformation, and implies tectonic extrusion of the material from the root zone.The initiation of brittle deformation in the Pindos thrust belt was associated with westward translation above the sub-horizontal Pindos Thrust. Later, as the mountain range elevated, normal faulting at high altitudes and migration of thrusting to the west occurred, while east-directed folding and thrusting in the belt started to the east.According to the proposed model, crustal thickening was taking place throughout the Oligocene and early Miocene, including the subduction of the Apulian beneath the Pelagonian microcontinent and the intracontinental subduction of the Phyllite–Quartzite Series. During the lower Miocene, vertical buoyancy forces led to the successive steepening of the shear zone and the simultaneous duplexing of its basement, facilitating tectonic extrusion of the material from its root zone. Finally, an indentation process caused vertical expulsion of the orogenic wedge and gravity collapse in the brittle crust.


1985 ◽  
Vol 34 ◽  
pp. 151-197
Author(s):  
Bjorn Hageskov

The Koster-Kattsund dyke swarm is an important element in the Sveconorwegian province of the Baltic shield. Dyke intrusion took place in the period 1225-1015 Ma. Throughout most of the swarm the dykes are strongly deformed and thoroughly recrystallised into lineated amphibolites as a result of a Sveconor- wegian tectonic event about 1000 Ma ago. However, in the Koster archipelago fresh dolerites can be fol­lowed northwards in to partially recrystallised metadolerites and finally into the totally recrystallised, line­ated amphibolites that characterise the swarm. In the Koster archipelago intense dyking resulted in the formation of a multilayered rock sandwich con­sisting of alternating layers of gneiss and dolerite. The sandwich trends NNE and dips 67°W. The dolerite dykes have a mean thickness of2.2 m and they occupy 15-20% of the total rock mass. To the northeast the sandwich becomes progressively deformed and ultimately shows very high strain of pure constrictional type. The deformation took place in a steep NW-SE-trending ductile shear zone. During the initial shear zone deformation (D4,) the sandwich underwent anticlockwise bending and the large Kyrkosund synform was formed. The fold plunges 303/66 and has a NW-SE-trending axial surface. The bending took place by means of flexural-slip folding in which the layer-parallel shearing was located in incompetent dyke layers. Increasing shearing and recrystallisation in a NW-SE-trending belt crossing the northern limb of the Kyr­kosund synform resulted in a softening of this belt. The succeeding event (D4b) was localised in this initial soft belt, and involved sinistral simple shear combined with pure shear resulting in horizontal widening and vertical shortening of the belt. This composite deformation formed the pure constrictional fabric now seen in the rocks. The strong D4b stretching was followed by the formation of trains of asymmetric folds (D 4c and d4a). It is demonstrated that volume changes in the dyke rock during deformation were negligible, and that no competence contrast between gneiss and dyke rock existed during the D 4b stretching. The finite con­strictional strain ellipsoid has the dimensions X = 7.07, Y = Z = 0.18. The composite simple/pure shear deformation that presumably caused the constriction has a simple shear component y = 10.9, correspond­ing to an angular shear of 84. 7°. The pure shear deformation resulted in a 3.4 times horizontal widening of the initial soft belt. The horizontal sinistral displacement within the shear zone was at least 35 km.


1976 ◽  
Vol 34 (1-2) ◽  
pp. 1-70 ◽  
Author(s):  
S.K. Ghosh ◽  
H. Ramberg
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elsiddig Elmukashfi

AbstractA method for determining the critical tearing energy in rubber-like materials is proposed. In this method, the energy required for crack propagation in a rubber-like material is determined by the change of recovered elastic energy which is obtained by deducting the dissipated energy due to different inelastic processes from the total strain energy applied to the system. Hence, the classical method proposed by Rivlin and Thomas using the pure shear tear test is modified using the actual stored elastic energy. The total dissipated energy is evaluated using cyclic pure shear and simple shear dynamic experiments at the critical stretch level. To accurately estimate the total dissipated energy, the unloading rate is determined from the time the crack takes to grow an increment. A carbon-black-filled natural rubber is examined in this study. In cyclic pure shear experiment, the specimens were cyclically loaded under quasi-static loading rate of $$0.01~{\rm {s}}^{-1}$$ 0.01 s - 1 and for different unloading rates, i.e. $$0.01$$ 0.01 , $$0.1$$ 0.1 and $$1.0~{\rm {s}}^{-1}$$ 1.0 s - 1 . The simple shear dynamic experiment is used to obtain the total dissipated energy at higher frequencies, i.e. $$0.5$$ 0.5 -$$18~{\rm {Hz}}$$ 18 Hz which corresponds to unloading rates $$0.46$$ 0.46 -$$16.41~{\rm {s}}^{-1}$$ 16.41 s - 1 , using the similarities between simple and pure shear deformation. The relationship between dissipated energy and unloading stretch rate is found to follow a power-law such that cyclic pure shear and simple shear dynamic experiments yield similar result. At lower unloading rates (i.e. $${\dot{\lambda }}_{\rm {U}} < 1.0~{\rm {s}}^{-1}$$ λ ˙ U < 1.0 s - 1 ), Mullins effect dominates and the viscous dissipation is minor, whereas at higher unloading rates, viscous dissipation becomes significant. At the crack propagation unloading rate $$125.2~{\rm {s}}^{-1}$$ 125.2 s - 1 , the viscous dissipation is significant such that the amount of dissipated energy increases approximately by $$125.4\%$$ 125.4 % from the lowest unloading rate. The critical tearing energy is obtained to be $$7.04~{\rm {kJ}}/{\rm {m}}^{2}$$ 7.04 kJ / m 2 using classical method and $$5.12~{\rm {kJ}}/{\rm {m}}^{2}$$ 5.12 kJ / m 2 using the proposed method. Hence, the classical method overestimates the critical tearing energy by approximately $$37.5\%$$ 37.5 % .


Author(s):  
Rémi Vachon ◽  
Mohsen Bazargan ◽  
Christoph F Hieronymus ◽  
Erika Ronchin ◽  
Bjarne Almqvist

Summary Elongate inclusions immersed in a viscous fluid generally rotate at a rate that is different from the local angular velocity of the flow. Often, a net alignment of the inclusions develops, and the resulting shape preferred orientation (SPO) of the particle ensemble can then be used as a strain marker that allows reconstruction of the fluid’s velocity field. Much of the previous work on the dynamics of flow-induced particle rotations has focused on spatially homogeneous flows with large-scale tectonic deformations as the main application. Recently, the theory has been extended to spatially varying flows, such as magma with embedded crystals moving through a volcanic plumbing system. Additionally, an evolution equation has been introduced for the probability density function (PDF) of crystal orientations. Here, we apply this new theory to a number of simple, two-dimensional flow geometries commonly encountered in magmatic intrusions, such as flow from a dyke into a reservoir or from a reservoir into a dyke, flow inside an inflating or deflating reservoir, flow in a dyke with a sharp bend, and thermal convection in a magma chamber. The main purpose is to provide a guide for interpreting field observations and for setting up more complex flow models with embedded crystals. As a general rule, we find that a larger aspect ratio of the embedded crystals causes a more coherent alignment of the crystals, while it has only a minor effect on the geometry of the alignment pattern. Due to various perturbations in the crystal rotation equations that are expected in natural systems, we show that the time-periodic behavior found in idealized systems is probably short-lived in nature, and the crystal alignment is well described by the time-averaged solution. We also confirm some earlier findings. For example, near channel walls, fluid flow often follows the bounding surface and the resulting simple shear flow causes preferred crystal orientations that are approximately parallel to the boundary. Where pure shear deformation dominates, there is a tendency for crystals to orient themselves in the direction of the greatest tensile strain rate. Where flow impinges on a boundary, for example in an inflating magma chamber or as part of a thermal convection pattern, the stretching component of pure shear aligns with the boundary, and the crystals orient themselves in that direction. In the field, this local pattern may be difficult to distinguish from a boundary-parallel simple shear flow. Pure shear also dominates along the walls of a deflating magma chamber and in places where the flow turns away from the reservoir walls, but in these locations, the preferred crystal orientation is perpendicular to the wall. Overall, we find that our calculated patterns of crystal orientations agree well with results from analogue experiments where similar geometries are available.


2021 ◽  
Vol 130 (4) ◽  
Author(s):  
Prasoon Anand ◽  
Snehashish Chakraverty ◽  
Soumyajit Mukherjee

Sign in / Sign up

Export Citation Format

Share Document