Vibrational investigation of the spinning bi-dimensional functionally graded (2-FGM) micro plate subjected to thermal load in thermal environment

2017 ◽  
Vol 24 (3) ◽  
pp. 1695-1711 ◽  
Author(s):  
Mohammad Mahinzare ◽  
Mohammad Mostafa Barooti ◽  
Majid Ghadiri
Author(s):  
Vu Ngoc Viet Hoang ◽  
Dinh Gia Ninh

In this paper, a new plate structure has been found with the change of profile according to the sine function which we temporarily call as the sinusoidal plate. The classical plate theory and Galerkin’s technique have been utilized in estimating the nonlinear vibration behavior of the new non-rectangular plates reinforced by functionally graded (FG) graphene nanoplatelets (GNPs) resting on the Kerr foundation. The FG-GNP plates were assumed to have two horizontal variable edges according to the sine function. Four different configurations of the FG-GNP plates based on the number of cycles of sine function were analyzed. The material characteristics of the GNPs were evaluated in terms of two models called the Halpin–Tsai micromechanical model and the rule of mixtures. First, to verify this method, the natural frequencies of new non-rectangular plates made of metal were compared with those obtained by the Finite Element Method (FEM). Then, the numerical outcomes are validated by comparing with the previous papers for rectangular FGM/GNP plates — a special case of this structure. Furthermore, the impacts of the thermal environment, geometrical parameters, and the elastic foundation on the dynamical responses are scrutinized by the 2D/3D graphical results and coded in Wolfram-Mathematica. The results of this work proved that the introduced approach has the advantages of being fast, having high accuracy, and involving uncomplicated calculation.


Author(s):  
M. Bateni ◽  
M. R. Eslami

This work presents a closed form investigation on the effect of temperature gradient on the buckling resistance of functionally graded material (FGM) shallow arches. The constituents are assumed to vary smoothly through the thickness of the arch according to the power law distribution and they are assumed to be temperature dependent. The arches subjected to the both uniform distributed radial load and central concentrated load and both boundary supports are supposed to be pinned. The temperature field is approximated by one-dimensional linear gradient through the thickness of the arch and the displacement field approximated by classical arches model. Also, Donnell type kinematics is utilized to extract the suitable strain-displacement relations for shallow arches. Adjacent equilibrium criterion is used to buckling analysis, and, critical bifurcation load is obtain in the complete presence of pre-buckling deformations. Results discloses the usefulness of using the FGM shallow arches in thermal environment because the temperature gradient enhances the buckling resistance of these structures when they are subjected to a lateral mechanical load.


2018 ◽  
Vol 7 (3.3) ◽  
pp. 373
Author(s):  
Sun Pil Kwon ◽  
Jae Jun Jung ◽  
Byoung Jo Jung

Background/Objectives: To improve a thermal load by increasing internal thermal effect of a building from direct solar radiation through an increase of glass windows.Methods/Statistical analysis: Through the establishment of test beds of the same size, the data of temperature, humidity, solar insolation and PMV of each test bed with or without external louver are acquired to analyze thermal environmental with the simulation.Findings: For the analysis of thermal environment, the amount of energy consumption has been analyzed through the simulation and the data of temperature, humidity, solar insolation and PMV have been acquired for the analysis. With the simulation, about 20% energy saving has been confirmed and the daily averages of temperature and humidity between 8AM to 7PM have been calculated to calculate the maximum temperature difference to be 9.4℃. The solar insolation between 9AM and 7PM was 300W/m2 or below.Improvements/Applications: The improvement of thermal effect with an external louver has been confirmed. It may be applied to the louver system to improve building thermal environment, awning to control direct solar radiation, blind to improve uniformity of illumination intensity toward building during daytime, external blind and ceiling louver system. 


Sign in / Sign up

Export Citation Format

Share Document