scholarly journals Long term ionospheric electron content variations over Delhi

2000 ◽  
Vol 18 (12) ◽  
pp. 1635-1644 ◽  
Author(s):  
J. K. Gupta ◽  
L. Singh

Abstract. Ionospheric electron content (IEC) observed at Delhi (geographic co-ordinates: 28.63°N, 77.22°E; geomagnetic co-ordinates: 19.08°N, 148.91°E; dip Latitude 24.8°N), India, for the period 1975–80 and 1986–89 belonging to an ascending phase of solar activity during first halves of solar cycles 21 and 22 respectively have been used to study the diurnal, seasonal, solar and magnetic activity variations. The diurnal variation of seasonal mean of IEC on quiet days shows a secondary peak comparable to the daytime peak in equinox and winter in high solar activity. IECmax (daytime maximum value of IEC, one per day) shows winter anomaly only during high solar activity at Delhi. Further, IECmax shows positive correlation with F10.7 up to about 200 flux units at equinox and 240 units both in winter and summer; for greater F10.7 values, IECmax is substantially constant in all the seasons. IECmax and magnetic activity (Ap) are found to be positively correlated in summer in high solar activity. Winter IECmax shows positive correlation with Ap in low solar activity and negative correlation in high solar activity in both the solar cycles. In equinox IECmax is independent of Ap in both solar cycles in low solar activity. A study of day-to-day variations in IECmax shows single day and alternate day abnormalities, semi-annual and annual variations controlled by the equatorial electrojet strength, and 27-day periodicity attributable to the solar rotation.Key words: Ionosphere (equatorial ionosphere) · Magnetospheric physics (magnetosphere · ionosphere interactions) · Radio science (ionospheric physics)

2021 ◽  
Vol 13 (22) ◽  
pp. 4559
Author(s):  
Marjolijn Adolfs ◽  
Mohammed Mainul Hoque

With the availability of fast computing machines, as well as the advancement of machine learning techniques and Big Data algorithms, the development of a more sophisticated total electron content (TEC) model featuring the Nighttime Winter Anomaly (NWA) and other effects is possible and is presented here. The NWA is visible in the Northern Hemisphere for the American sector and in the Southern Hemisphere for the Asian longitude sector under solar minimum conditions. During the NWA, the mean ionization level is found to be higher in the winter nights compared to the summer nights. The approach proposed here is a fully connected neural network (NN) model trained with Global Ionosphere Maps (GIMs) data from the last two solar cycles. The day of year, universal time, geographic longitude, geomagnetic latitude, solar zenith angle, and solar activity proxy, F10.7, were used as the input parameters for the model. The model was tested with independent TEC datasets from the years 2015 and 2020, representing high solar activity (HSA) and low solar activity (LSA) conditions. Our investigation shows that the root mean squared (RMS) deviations are in the order of 6 and 2.5 TEC units during HSA and LSA period, respectively. Additionally, NN model results were compared with another model, the Neustrelitz TEC Model (NTCM). We found that the neural network model outperformed the NTCM by approximately 1 TEC unit. More importantly, the NN model can reproduce the evolution of the NWA effect during low solar activity, whereas the NTCM model cannot reproduce such effect in the TEC variation.


1965 ◽  
Vol 43 (6) ◽  
pp. 1059-1067 ◽  
Author(s):  
G. F. Lyon

The results of observations of the 54-Mc/s signal from Transit IVA (1961 Omicron 1) during a 12-month period are presented. Total columnar electron content measurements are made by the differential Faraday rotation method. It is shown that the electron content is inversely dependent upon the magnetic-activity index during the summer months but not during the winter. The presence of horizontal gradients in content is sometimes indicated. It is also found that the variation of electron content with solar zenith angle indicates an ionosphere approximating an ideal Chapman layer.


1997 ◽  
Vol 15 (8) ◽  
pp. 1015-1027 ◽  
Author(s):  
E. Feichter ◽  
R. Leitinger

Abstract. The double-sunspot-cycle variation in terrestrial magnetic activity has been well known for about 30 years. In 1990 we examined and compared the low-solar-activity (LSA) part of two consecutive cycles and predicted from this database and from published results the existence of a double-sunspot-cycle variation in total electron content (TEC) of the ionosphere too. This is restricted to noontime when the semi-annual component is well developed. Since 1995 we have had enough data for the statistical processing for high-solar-activity (HSA) conditions of two successive solar cycles. The results confirm the LSA findings. The annual variation of TEC shows a change from an autumn maximum in cycle 21 to a spring maximum during the next solar cycle. Similar to the aa indices for geomagnetic activity the TEC data show a phase change in the 1-year component of the Fourier transform of the annual variation. Additionally we found the same behaviour in the F-layer peak electron density (Nmax) over four solar cycles. This indicates that there exists a double-sunspot-cycle variation in the F-layer ionization over Europe too. It is very likely coupled with the 22-year cycle in geomagnetic activity.


1998 ◽  
Vol 41 (5-6) ◽  
Author(s):  
R. Leitinger

The electron content of the ionosphere is an important quantity which indicates overall ionization. It is measured by means of propagation effects on radio signals which penetrate the ionosphere. In Europe relevant investigations started after the launch of the first artificial satellites. Soon the necessity arose to organize international cooperation: the regional as well as the global geographical distribution of ionization parameters is important knowledge for any meaningful geophysical interpretation of ionization parameters. Despite the fact that international scientific Unions and Committees existed and had proven their usefulness and potential, private initiatives were taken to organize cooperation in the field of research based on transionospheric propagation effects. Only in 1971 three international groups joined together to form the "Beacon Satellite Group"as a "Working Party" of COSPAR. The "Beacon Satellite Group" still exists but is now a Working Group of URSI, the International Union for Radio Science. This contribution tries to summarize the European perspective with special emphasis on the long standing cooperation between the Istituto di Ricerca sulle Onde Elettromagnetiche (IROE) at Firenze and the Institut für Meteorologie und Geophysik of the University of Graz. Examples are given of important results.


Author(s):  
Dung Nguyen Thanh ◽  
Minh Le Huy ◽  
Christine Amory-Mazaudier ◽  
Rolland Fleury ◽  
Susumu Saito ◽  
...  

This paper presents the variations of the rate of change of Total Electron Content (TEC) index (ROTI), characterizing the occurrence of ionospheric plasma irregularities over Vietnam and neighboring countries in the Southeast Asian region using the continuous GPS data during the 2008-2018 period. The results showed that the occurrence of strong ROTI in all stations is maximum in equinox months March/April and September/October and depends on solar activity. The ROTI is weak during periods of low solar activity and strong during periods of high solar activity. There is an asymmetry between the two equinoxes. During maximum and declining phases of 2014-2016, occurrence rates in March equinox are larger than in September equinox, but during the descending period of 2010-2011, the occurrence rates in September equinox at almost all stations are larger than in March equinox. The correlation coefficients between the monthly occurrence rate of irregularities and the F10.7 solar index at the stations in the equatorward EIA crest region are higher than at those in the magnetic equatorial and the poleward EIA crest regions. The irregularity occurrence is high in the pre-midnight sector, maximum between 2000 LT to 2200 LT. The maximum irregularity occurrence is located around 4-5° degrees in latitude equator-ward away from the anomaly crests.


2003 ◽  
Vol 21 (12) ◽  
pp. 2323-2328 ◽  
Author(s):  
R. S. Dabas ◽  
L. Kersley

Abstract. Nighttime enhancements in ionospheric electron content (IEC)/peak electron density (NmF2) have been studied by various workers in the equatorial anomaly and mid-latitude regions. Such studies give an idea about their enhancement over that location only. In the present study tomographic images over the UK, which give a latitudinal versus height distributions of ionospheric electron density in a much wider area, have been used to study the anomalous increases in nighttime F-region electron density at mid-latitudes. From the analysis of four seasonal representative months (November 1997, March, June and October 1998) data it was noted that the majority of the cases of nighttime enhancements were observed after local midnight, with a maximum between 03:00–04:00 LT in the month of November 1997. Enhancements were observed mostly between 45–50° N latitudes, and their positions are not affected by magnetic activity (Kp ) variations, whereas the separation between the mid-latitude trough and enhancement decreases with increases in magnetic activity. This finding shows that only the trough moves equatorward with the increase in magnetic activity. It is also noted that the electron density gradient from the trough to the enhancement increases with an increase in Kp. Results are discussed in terms of downward plasma transport from the protonosphere to the ionosphere and the nighttime neutral winds.Key words. Ionosphere (mid-latitude ionosphere; modeling and forecasting; instruments and techniques)


1991 ◽  
Vol 9 (2) ◽  
pp. 330-331 ◽  
Author(s):  
J. O. Murphy

AbstractThe atmospheric 14C record, the corresponding WM values derived from a carbon reservoir model, auroral numbers and the Zurich relative annual sunspot numbers all demonstrate a substantial downturn in solar activity for the duration of solar cycles 5 and 6. This reduction is also imbedded in some dendrochronological proxy data sets, which describe an annual index radial growth rate for trees at high-altitude sites. A significant lagged correlation can exist between tree-ring indices and the 11–year solar cycle during periods of high solar activity, a feature which is not evident during quiescent periods.


2020 ◽  
Author(s):  
Mingwu Jin ◽  
Yang Pan ◽  
Shunrong Zhang ◽  
Yue Deng

<p>Because of the limited coverage of receiver stations, current measurements of Total Electron Content (TEC) by ground-based GNSS receivers are not complete with large portions of data gaps. The processing to obtain complete TEC maps for space science research is time consuming and needs the collaboration of five International GNSS Service (IGS) Ionosphere Associate Analysis Centers (IAACs) to use different data processing and filling algorithms and to consolidate their results into final IGS completed TEC maps. In this work, we developed a Deep Convolutional Generative Adversarial Network (DCGAN) and Poisson blending model (DCGAN-PB) to learn IGS completion process for automatic completion of TEC maps. Using 10-fold cross validation of 20-year IGS TEC data, DCGAN-PB achieves the average root mean squared error (RMSE) about 4 absolute TEC units (TECu) of the high solar activity years and around 2 TECu for low solar activity years, which is about 50% reduction of RMSE for recovered TEC values compared to two conventional single-image inpainting methods. The developed DCGAN-PB model can lead to an efficient automatic completion tool for TEC maps.</p>


2009 ◽  
Vol 43 (11) ◽  
pp. 1757-1761 ◽  
Author(s):  
O.K. Obrou ◽  
M.N. Mene ◽  
A.T. Kobea ◽  
K.Z. Zaka

Sign in / Sign up

Export Citation Format

Share Document