scholarly journals Very low zonally asymmetric ozone values in March 1997 above the North Atlantic-European region, induced by dynamic processes

1999 ◽  
Vol 17 (7) ◽  
pp. 933-940 ◽  
Author(s):  
G. Entzian ◽  
D. Peters

Abstract. The total ozone distribution in March 1997 showed very low values in the North Atlantic-European region, even lower than in the years before. A spatial pattern correlation between the zonally asymmetric part of total ozone and that of the 300 hPa surface geopotential of the Northern Hemisphere was applied to examine the spatial structure of the low ozone values and its dynamic dependence. A trend analysis in the North Atlantic-European region was carried out to determine to what extent the low March 1997 ozone values are related to the decadal change of meteorological parameters in the lower stratosphere, observed since the 1980s, in comparison to the interannual variability. The conclusion is that the very low ozone values above the North Atlantic-European region in March 1997 were mainly induced by dynamic processes, namely their decadal change as well as their interannual variability.Key words. Meteorology and atmospheric dynamics (climatology; middle atmosphere dynamics)

Atmosphere ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 468
Author(s):  
Andrea Schneidereit ◽  
Dieter Peters

Strong zonally asymmetric ozone (ZAO) changes are observed in the boreal extratropics for winter. During the TOMS (Total Ozone Mapping Spectrometer) period (1979–1992) the decrease of zonally asymmetric total ozone (ZATO) was twice as large as the observed zonal mean total ozone trend over Europe in January mainly caused by ultra-long wave transport. Recent studies have demonstrated that the ozone evolution reveals three different quasi-bidecadal trend stages: (i) Decline, (ii) leveling, and (ii) healing. This study focuses on the ZAO structure in boreal extratropics and on ozone transport changes by ultra-long waves during winter months. ERA-Interim data together with a linearized transport model are used. During the healing stage ZATO increases significantly over the North Atlantic/European region for January. The ZATO increase (healing stage) and ZATO decrease (decline stage) are caused by different monthly mean ozone transport characteristics of ultra-long planetary waves over the North Atlantic/European region. Furthermore, the vertical advection (ageostrophic transport) of ozone versus its horizontal component dominates in the lower and middle stratosphere during the healing stage. It is hypothesized that these ageostrophic wind changes are mainly caused by a wave train directed northeastwards which seems to be directly linked to the Arctic warming.


2021 ◽  
pp. 1-49
Author(s):  
Buwen Dong ◽  
Rowan T. Sutton

AbstractThe variability of the westerly jet stream and storm track is crucial for summer weather and climate in the North Atlantic/European region. Observations for recent decades show notable trends in the summer jet from 1970s to 2010s, characterized by an equatorward migration over the North Atlantic accompanied by a poleward migration and weakening of the Mediterranean jet over Europe. These changes in atmospheric circulation were associated with more cyclonic storms traveling across the UK into northern Europe, and fewer over the Mediterranean, leading to wet summers in northern Europe and dry summers in southern Europe.In this study we investigate the potential drivers and processes that may have been responsible for the observed changes in summer atmospheric circulation, with a particular focus on the role of anthropogenic aerosols (AA). We conduct attribution experiments with an atmospheric general circulation model (AGCM) forced with observed changes in sea surface temperatures/sea ice extent (SST/SIE), greenhouse gas concentrations and AA precursor emissions. Comparison between the model results and observations strongly suggests that fast responses to AA changes were likely the primary driver of the observed poleward migration and weakening of the Mediterranean jet, with changes in SST/SIE playing a secondary role. The simulated response shows good agreement with the observed changes in both magnitude and vertical structure, which suggests that common mechanisms - involving aerosol-radiation and aerosol-cloud interactions - are responsible. By contrast, changes in the North Atlantic jet are influenced in the model experiments by changes in both Atlantic SST/SIE (which may themselves have been influenced by changes in AA) and fast responses to AA. In this case, however, there are significant differences between the model response and the observed changes; we argue these differences may be explained by biases in the model climatology.


2014 ◽  
Vol 14 (14) ◽  
pp. 21065-21099
Author(s):  
I. Petropavlovskikh ◽  
R. Evans ◽  
G. McConville ◽  
G. L. Manney ◽  
H. E. Rieder

Abstract. Continuous measurements of total ozone (by Dobson spectrophotometers) across the contiguous United States (US) began in the early 1960s. Here, we analyze temporal and spatial variability and trends in total ozone from the five US sites with long-term records. While similar long-term ozone changes are detected at all five sites, we find differences in the patterns of ozone variability on shorter time scales. In addition to standard evaluation techniques, STL-decomposition methods (Seasonal Trend decomposition of time series based on LOcally wEighted Scatterplot Smoothing, LOESS) are used to address temporal variability and trends in the Dobson data. The LOESS-smoothed trend components show a decline of total ozone between the 1970s and 2000s and a "stabilization" at lower levels in recent years, which is also confirmed by linear trend analysis. Methods from statistical extreme value theory (EVT) are used to characterize days with high and low total ozone (termed EHOs and ELOs, respectively) at each station and to analyze temporal changes in the frequency of ozone extremes and their relationship to dynamical features such as the North Atlantic Oscillation and El Niño Southern Oscillation. A comparison of the "fingerprints" detected in the frequency distribution of the extremes with those for standard metrics (i.e., the mean) shows that more "fingerprints" are found for the extremes, particularly for the positive phase of the NAO, at all five US monitoring sites. Results from the STL-decomposition support the findings of the EVT analysis. Finally, we analyze the relative influence of low and high ozone events on seasonal mean column ozone at each station. The results show that the influence of ELOs and EHOs on seasonal mean column ozone can be as much as ±5%, or about twice as large as the overall long-term decadal ozone trends.


2008 ◽  
Vol 26 (5) ◽  
pp. 1275-1286 ◽  
Author(s):  
D. H. W. Peters ◽  
A. Gabriel ◽  
G. Entzian

Abstract. This study examines the longitude-dependent decadal changes and trends of ozone for the boreal winter months during the period of 1960–2000. These changes are caused primarily by changes in the planetary wave structure in the upper troposphere and lower stratosphere. The decadal changes and trends over 4 decades of geopotential perturbations, defined as a deviation from the zonal mean, are estimated by linear regression with time. The decadal changes in longitude-dependent ozone were calculated with a simple transport model of ozone based on the known planetary wave structure changes and prescribed zonal mean ozone gradients. For December of the 1960s and 1980s a statistically significant Rossby wave track appeared over the North Atlantic and Europe with an anticyclonic disturbance over the Eastern North Atlantic and Western Europe, flanked by cyclonic disturbances. In the 1970s and 1990s statistically significant cyclonic disturbances appeared over the Eastern North Atlantic and Europe, surrounded by anticyclonic anomalies over Northern Africa, Central Asia and Greenland. Similar patterns have been found for January. The Rossby wave track over the North Atlantic and Europe is stronger in the 1980s than in the 1960s. For February, the variability of the regression patterns is higher. For January we found a strong alteration in the modelled decadal changes in total ozone over Central and Northern Europe, showing a decrease of about 15 DU in the 1960s and 1980s and an increase of about 10 DU in the 1970s and 1990s. Over Central Europe the positive geopotential height trend (increase of 2.3 m/yr) over 40 years is of the same order (about 100 m) as the increase in the 1980s alone. This is important to recognize because it implies a total ozone decrease over Europe of the order of 14 DU for the 1960–2000 period, for January, if we use the standard change regression relation that about a 10-m geopotential height increase at 300 hPa is related to about a 1.4-DU total ozone decrease.


2021 ◽  
Author(s):  
Maria Meirelles

<p>Climate change cause large, long-term impacts on human well-being and adds more pressure to terrestrial and marine ecosystems. The archipelago of the Azores is located in the subtropical region of the North Atlantic and is therefore highly influenced by the North Atlantic Subtropical Anticyclone. As it is an almost stationary high pressure system, whose development and orientation determine the nature and characteristics of the air masses that reach the region. The motivation for this research has two phases; the first was to study the effects of some meteorological parameters (temperature, radiation, wind speed, humidity, precipitation, evaporation, tank temperature and tank level) for the period 2010-2012, on the biodiversity of phytoplankton communities in relation to the abundance of these organisms in the lagoons of Fogo, Furnas, and Sete Cidades of the island of São Miguel - Azores, for the period 2010-2012, using an analysis in Principal  Components, which will allow correlating the meteorological parameters and the abundance of phytoplankton. The phytoplankton and meteorological community data were obtained from the website of the Regional Secretariat for the Environment and Climate Change of the Azores Government. In a second phase, the European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis of the ERA5 project (ECMWF Re-Analyzes) was used for the 1979-2019 observation period and for the Azores region. For this region, the deviations of the surface air temperature, average annual precipitation and climatological extremes were calculated, this referring to the maximum number of consecutive days with precipitation <1 mm, and also, the number of tropical nights using the ERA5 reanalysis series in the period 1979-2019 with reference to 1961-1990. Projections were also estimated up to 2100 and according to scenarios RCP 2.6, 4.5 and 8.5 for the referred parameters. Finally, variations for the end of the century (2071-2100) were estimated with reference to the most recent situation of 1991-2020.</p><p>The thermal balance of a lagoon is associated with climatic and meteorological conditions. Much of the biological processes in the lagoons are directly affected by thermal changes in the water, and therefore, indirectly affected by climatic variation. Understanding the interaction between the lagoon-atmosphere system is important to predict the consequences of the effects of climate change on the abundance of phytoplankton. In this study, a positive correlation was verified between precipitation and abundance of Bacillariophyta, Dinophyta and Cryptophyta. From the calculations performed, the average of the models results in an increase in the maximum number of consecutive days with low rainfall (<1mm) from + 0.2 to 4.8 days / year until the year 2100, with a lower abundance of these algae being expected. On the other hand, Cyanophyta, Chlorophyta and Chrisophyta are well correlated with high values ​​of air temperature, lagoon water temperature and solar radiation. Thus, it is estimated an increase in the abundance of these algae, due to the forecasts of several models, that point to an increase in the average annual temperature in this region between 1 and 3 K until the year 2100, with reference to the period from 1961 to 1990.</p>


Sign in / Sign up

Export Citation Format

Share Document