Disc degeneration spreads: long-term behavioural, histologic and radiologic consequences of a single-level disc injury in active and sedentary mice

Author(s):  
Magali Millecamps ◽  
Seunghwan Lee ◽  
Daniel Z. Foster ◽  
Laura S. Stone
2017 ◽  
Vol 176 (2) ◽  
pp. 28-32
Author(s):  
V. V. Shlomin ◽  
A. V. Gusinskiy ◽  
M. L. Gordeev ◽  
I. V. Mikhailov ◽  
D. N. Maistrenko ◽  
...  

OBJECTIVE. The authors would like to consider the possibility and feasibility of simultaneous revascularization of two arterial segments in patients with lower extremity arterial occlusive disease by method of semiclosed loop endarterectomy. MATERIALS AND METHODS. The research included 143 patients. Revascularization of aortofemoral segment was performed on 67 patients. The simultaneous revascularization of aortofemoral and femoropopliteal segments was carried out for 76 patients. The follow-up period was 5 years. RESULTS. There was revealed that the long-term results of multilevel reconstruction were worse that single-level reconstruction. This method requires an individual approach. The best results of simultaneous interventions were obtained in patients aged 60 and older with the III stage of chronic limb ischemia and 2 or 3 working shin arteries. The worst results were observed in patients younger than 50 year old with IV stage of critical limb ischemia and significant lesions of shin arteries.


2013 ◽  
Vol 19 (5) ◽  
pp. 546-554 ◽  
Author(s):  
Sheeraz A. Qureshi ◽  
Steven McAnany ◽  
Vadim Goz ◽  
Steven M. Koehler ◽  
Andrew C. Hecht

Object In recent years, there has been increased interest in the use of cervical disc replacement (CDR) as an alternative to anterior cervical discectomy and fusion (ACDF). While ACDF is a proven intervention for patients with myelopathy or radiculopathy, it does have inherent limitations. Cervical disc replacement was designed to preserve motion, avoid the limitations of fusion, and theoretically allow for a quicker return to activity. A number of recently published systematic reviews and randomized controlled trials have demonstrated positive clinical results for CDR, but no studies have revealed which of the 2 treatment strategies is more cost-effective. The purpose of this study was to evaluate the cost-effectiveness of CDR and ACDF by using the power of decision analysis. Additionally, the authors aimed to identify the most critical factors affecting procedural cost and effectiveness and to define thresholds for durability and function to focus and guide future research. Methods The authors created a surgical decision model for the treatment of single-level cervical disc disease with associated radiculopathy. The literature was reviewed to identify possible outcomes and their likelihood following CDR and ACDF. Health state utility factors were determined from the literature and assigned to each possible outcome, and procedural effectiveness was expressed in units of quality-adjusted life years (QALYs). Using ICD-9 procedure codes and data from the Nationwide Inpatient Sample, the authors calculated the median cost of hospitalization by multiplying hospital charges by the hospital-specific cost-to-charge ratio. Gross physician costs were determined from the mean Medicare reimbursement for each current procedural terminology (CPT) code. Uncertainty as regards both cost and effectiveness numbers was assessed using sensitivity analysis. Results In the reference case, the model assumed a 20-year duration for the CDR prosthesis. Cervical disc replacement led to higher average QALYs gained at a lower cost to society if both strategies survived for 20 years ($3042/QALY for CDR vs $8760/QALY for ACDF). Sensitivity analysis revealed that CDR needed to survive at least 9.75 years to be considered a more cost-effective strategy than ACDF. Cervical disc replacement becomes an acceptable societal strategy as the prosthesis survival time approaches 11 years and the $50,000/QALY gained willingness-to-pay threshold is crossed. Sensitivity analysis also indicated that CDR must provide a utility state of at least 0.796 to be cost-effective. Conclusions Both CDR and ACDF were shown to be cost-effective procedures in the reference case. Results of the sensitivity analysis indicated that CDR must remain functional for at least 14 years to establish greater cost-effectiveness than ACDF. Since the current literature has yet to demonstrate with certainty the actual durability and long-term functionality of CDR, future long-term studies are required to validate the present analysis.


Author(s):  
Nadeen Chahine ◽  
Nate Stetson ◽  
Neena Rajan ◽  
Daniel Grande ◽  
Mitchell Levine

Enzymatic degradation of the intervertebral disc (IVD) with chondroitinase ABC (ChABC) reduces proteoglycan content of the IVD, thus simulating the GAG loss seen clinically in patients suffering from disc degeneration. This approach has been employed in models of disc injury in rats, rabbits and goats when administered over a large range of dosages [1–3]. Moreover, ChABC has also been used to induce repair of herniated discs in rabbits via chemonucleolysis [4, 5]. Despite the effectiveness of ChABC treatment to reduce the GAG content of the IVD, several recent studies including our own, have shown that this GAG loss is reversible at extended time points post enzymatic treatment [2,6,7]. The goal of the current study is to examine the dose dependent response of IVDs to degradation by ChABC in vivo. We hypothesize that administration of ChABC will result in dose dependent GAG loss and reduced mechanical properties. We administered ChABC at 0.1 U/ml, 1.0 U/ml and 10 U/ml and examined the changes in biomechanical properties, biochemical content, and gene expression in order to examine the biophysical and molecular mechanism by which GAG loss occurs in this model.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Fangfang Bi ◽  
Wenbo Liu ◽  
Zongtao Wu ◽  
Chen Ji ◽  
Cuicui Chang

Antiaging protein Klotho exhibits impressive properties of anti-inflammation, however is declined early after intervertebral disc injury, making Klotho restoration an attractive strategy of treating intervertebral disc inflammatory disorders. Here, we have found that Klotho is enriched in nucleus pulposus (NP) cells and Klotho overexpression attenuates H2O2-induced acute inflammation essentially via suppressing Toll-like receptor 4 (TLR4). The proinflammatory NF-κB signaling and cytokine expressions paralleled with Klotho repression and TLR4 elevation in both NP cells (H2O2 treatment) and rat intervertebral disc (needle puncture treatment). Overexpression of TLR4 downregulated expression of Klotho, whereas interfering TLR4 expression diminished the inhibitory effects of H2O2 on Klotho in NP cells. Consistently, Klotho knockdown by RNA interferences largely diminished the anti-inflammatory and intervertebral disc protective effects in an Intervertebral Disc Degeneration (IDD) model. Thus, our study indicates that TLR4-NF-κB signaling and Klotho form a negative-feedback loop in NP cells. Also, we demonstrate that the expression of Klotho is regulated by the balance between upregulation and downregulation of TLR4-NF-κB signaling.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
V. Palepu ◽  
M. Kodigudla ◽  
V. K. Goel

Disc degeneration and associated disorders are among the most debated topics in the orthopedic literature over the past few decades. These may be attributed to interrelated mechanical, biochemical, and environmental factors. The treatment options vary from conservative approaches to surgery, depending on the severity of degeneration and response to conservative therapies. Spinal fusion is considered to be the “gold standard” in surgical methods till date. However, the association of adjacent level degeneration has led to the evolution of motion preservation technologies like spinal arthroplasty and posterior dynamic stabilization systems. These new technologies are aimed to address pain and preserve motion while maintaining a proper load sharing among various spinal elements. This paper provides an elaborative biomechanical review of the technologies aimed to address the disc degeneration and reiterates the point that biomechanical efficacy followed by long-term clinical success will allow these nonfusion technologies as alternatives to fusion, at least in certain patient population.


Sign in / Sign up

Export Citation Format

Share Document