scholarly journals Process-property correlations in laser-induced graphene electrodes for electrochemical sensing

2021 ◽  
Vol 188 (5) ◽  
Author(s):  
Arne Behrent ◽  
Christian Griesche ◽  
Paul Sippel ◽  
Antje J. Baeumner

AbstractLaser-induced graphene (LIG) has emerged as a promising electrode material for electrochemical point-of-care diagnostics. LIG offers a large specific surface area and excellent electron transfer at low-cost in a binder-free and rapid fabrication process that lends itself well to mass production outside of the cleanroom. Various LIG micromorphologies can be generated when altering the energy input parameters, and it was investigated here which impact this has on their electroanalytical characteristics and performance. Energy input is well controlled by the laser power, scribing speed, and laser pulse density. Once the threshold of required energy input is reached a broad spectrum of conditions leads to LIG with micromorphologies ranging from delicate irregular brush structures obtained at fast, high energy input, to smoother and more wall like albeit still porous materials. Only a fraction of these LIG structures provided high conductance which is required for appropriate electroanalytical performance. Here, it was found that low, frequent energy input provided the best electroanalytical material, i.e., low levels of power and speed in combination with high spatial pulse density. For example, the sensitivity for the reduction of K3[Fe(CN)6] was increased almost 2-fold by changing fabrication parameters from 60% power and 100% speed to 1% power and 10% speed. These general findings can be translated to any LIG fabrication process independent of devices used. The simple fabrication process of LIG electrodes, their good electroanalytical performance as demonstrated here with a variety of (bio)analytically relevant molecules including ascorbic acid, dopamine, uric acid, p-nitrophenol, and paracetamol, and possible application to biological samples make them ideal and inexpensive transducers for electrochemical (bio)sensors, with the potential to replace the screen-printed systems currently dominating in on-site sensors used. Graphical abstract

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yehe Liu ◽  
Andrew M. Rollins ◽  
Richard M. Levenson ◽  
Farzad Fereidouni ◽  
Michael W. Jenkins

AbstractSmartphone microscopes can be useful tools for a broad range of imaging applications. This manuscript demonstrates the first practical implementation of Microscopy with Ultraviolet Surface Excitation (MUSE) in a compact smartphone microscope called Pocket MUSE, resulting in a remarkably effective design. Fabricated with parts from consumer electronics that are readily available at low cost, the small optical module attaches directly over the rear lens in a smartphone. It enables high-quality multichannel fluorescence microscopy with submicron resolution over a 10× equivalent field of view. In addition to the novel optical configuration, Pocket MUSE is compatible with a series of simple, portable, and user-friendly sample preparation strategies that can be directly implemented for various microscopy applications for point-of-care diagnostics, at-home health monitoring, plant biology, STEM education, environmental studies, etc.


Micromachines ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 662 ◽  
Author(s):  
Mohsen Mohammadniaei ◽  
Huynh Vu Nguyen ◽  
My Van Tieu ◽  
Min-Ho Lee

Effective cancer treatment requires early detection and monitoring the development progress in a simple and affordable manner. Point-of care (POC) screening can provide a portable and inexpensive tool for the end-users to conveniently operate test and screen their health conditions without the necessity of special skills. Electrochemical methods hold great potential for clinical analysis of variety of chemicals and substances as well as cancer biomarkers due to their low cost, high sensitivity, multiplex detection ability, and miniaturization aptitude. Advances in two-dimensional (2D) material-based electrochemical biosensors/sensors are accelerating the performance of conventional devices toward more practical approaches. Here, recent trends in the development of 2D material-based electrochemical biosensors/sensors, as the next generation of POC cancer screening tools, are summarized. Three cancer biomarker categories, including proteins, nucleic acids, and some small molecules, will be considered. Various 2D materials will be introduced and their biomedical applications and electrochemical properties will be given. The role of 2D materials in improving the performance of electrochemical sensing mechanisms as well as the pros and cons of current sensors as the prospective devices for POC screening will be emphasized. Finally, the future scopes of implementing 2D materials in electrochemical POC cancer diagnostics for the clinical translation will be discussed.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 247 ◽  
Author(s):  
Diem ◽  
Fenk ◽  
Bill ◽  
Burghard

Nowadays, research on electrochemical storage systems moves into the direction of post-lithium-ion batteries, such as aluminum-ion batteries, and the exploration of suitable materials for such batteries. Vanadium pentoxide (V2O5) is one of the most promising host materials for the intercalation of multivalent ions. Here, we report on the fabrication of a binder-free and self-supporting V2O5 micrometer-thick paper-like electrode material and its use as the cathode for rechargeable aluminum-ion batteries. The electrical conductivity of the cathode was significantly improved by a novel in-situ and self-limiting copper migration approach into the V2O5 structure. This process takes advantage of the dissolution of Cu by the ionic liquid-based electrolyte, as well as the presence of two different accommodation sites in the nanostructured V2O5 available for aluminum-ions and the migrated Cu. Furthermore, the advanced nanostructured cathode delivered a specific discharge capacity of up to ~170 mAh g−1 and the reversible intercalation of Al3+ for more than 500 cycles with a high Coulomb efficiency reaching nearly 100%. The binder-free concept results in an energy density of 74 Wh kg−1, which shows improved energy density in comparison to the so far published V2O5-based cathodes. Our results provide valuable insights for the future design and development of novel binder-free and self-supporting electrodes for rechargeable multivalent metal-ion batteries associating a high energy density, cycling stability, safety and low cost.


2020 ◽  
Vol 150 ◽  
pp. 111956
Author(s):  
Andrew Lakey ◽  
Zulfiqur Ali ◽  
Simon M. Scott ◽  
Syrine Chebil ◽  
Hafsa Korri-Youssoufi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document