Single nucleotide mutation leading to an amino acid substitution in the variant Tik soybean Kunitz trypsin inhibitor (SKTI) identified in Chinese wild soybean (Glycine soja Sieb. & Zucc.)

2011 ◽  
Vol 298 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Ke-Jing Wang ◽  
Xiang-Hua Li ◽  
Tetsuro Yamashita ◽  
Yoshihito Takahata
Genome ◽  
2004 ◽  
Vol 47 (1) ◽  
pp. 9-14 ◽  
Author(s):  
Ke-Jing Wang ◽  
Tetsuro Yamashita ◽  
Masao Watanabe ◽  
Yoshihito Takahata

A novel variant of soybean Kunitz trypsin inhibitor (SKTI) was detected in 530 lines of wild soybean (Glycine soja). This variant showed an intermediate electrophoretic mobility between the Tia and Tic types. In isoelectric focusing polyacrylamide gel electrophoresis gels containing urea, this variant had a similar isoelectric point as that of Tia. The genetic analysis of SKTI bands in F2 seeds from crosses of the new variant type with Tia or Tic type showed that this variant type is controlled by a codominant allele at the SKTI locus. We propose the genetic symbol Tif for this novel variant. When the nucleotide sequence of the Tif gene was compared with those of other types of SKTI genes (Tia, Tib, and Tic), the sequence of Tif was identical to that of Tib with the exception of one A[Formula: see text]G transitional mutation occurring at position 676 of Tif. This mutation resulted in an amino acid change from Lys to Glu at the 178 residue. These results suggest that this variant is derived from Tib through a point mutation. In addition, we settled an inconsistency in the number of amino acid differences between Tia and Tib (eight or nine). Analysis of nucleotide and amino acid sequences revealed that Tib was different from Tia by nine amino acids.Key words: soybean Kunitz trypsin inhibitor, polymorphism, gene sequence, soybean, wild soybean.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1001
Author(s):  
Jagadeesh Sundaramoorthy ◽  
Gyu Tae Park ◽  
Hyun Jo ◽  
Jeong-Dong Lee ◽  
Hak Soo Seo ◽  
...  

The enzyme flavonoid 3′,5′-hydroxylase (F3′5′H) plays an important role in producing anthocyanin pigments in soybean. Loss of function of the W1 locus encoding F3′5′H always produces white flowers. However, few color variations have been reported in wild soybean. In the present study, we isolated a new color variant of wild soybean accession (IT261811) with pinkish-white flowers. We found that the flower’s pinkish-white color is caused by w1-s3, a single recessive allele of W1. The SNP detected in the mutant caused amino acid substitution (A304S) in a highly conserved SRS4 domain of F3′5′H proteins. On the basis of the results of the protein variation effect analyzer (PROVEAN) tool, we suggest that this mutation may lead to hypofunctional F3′5′H activity rather than non-functional activity, which thereby results in its pinkish-white color.


2021 ◽  
Author(s):  
Louis R Nemzer

A three-dimensional representation of the twenty proteinogenic amino acids in a physicochemical space is presented. Vectors corresponding to amino acid substitutions are classified based on whether they are accessible via a single-nucleotide mutation. It is shown that the standard genetic code establishes a "choice architecture" that permits nearly independent tuning of the properties related with size and those related with hydrophobicity. This work sheds light on the metarules of evolvability that may have shaped the standard genetic code to increase the probability that adaptive point mutations will be generated. An illustration of the usefulness of visualizing amino acid substitutions in a 3D physicochemical space is shown using data collected from the SARS-CoV-2 receptor binding domain. The substitutions most responsible for antibody escape are almost always inaccessible via single nucleotide mutation, and also change multiple properties concurrently. The results of this research can extend our understanding of certain hereditary disorders caused by point mutations, as well as guide the development of rational protein and vaccine design.


2021 ◽  
Vol 19 (1) ◽  
pp. 35-43
Author(s):  
Awatsaya Chotekajorn ◽  
Takuyu Hashiguchi ◽  
Masatsugu Hashiguchi ◽  
Hidenori Tanaka ◽  
Ryo Akashi

AbstractWild soybean (Glycine soja) is a valuable genetic resource for soybean improvement. Seed composition profiles provide beneficial information for the effective conservation and utilization of wild soybeans. Therefore, this study aimed to assess the variation in free amino acid abundance in the seeds of wild soybean germplasm collected in Japan. The free amino acid content in the seeds from 316 accessions of wild soybean ranged from 0.965 to 5.987 mg/g seed dry weight (DW), representing a 6.2-fold difference. Three amino acids had the highest coefficient of variation (CV): asparagine (1.15), histidine (0.95) and glutamine (0.94). Arginine (0.775 mg/g DW) was the predominant amino acid in wild soybean seeds, whereas the least abundant seed amino acid was glutamine (0.008 mg/g DW). A correlation network revealed significant positive relationships among most amino acids. Wild soybean seeds from different regions of origin had significantly different levels of several amino acids. In addition, a significant correlation between latitude and longitude of the collection sites and the total free amino acid content of seeds was observed. Our study reports diverse phenotypic data on the free amino acid content in seeds of wild soybean resources collected from throughout Japan. This information will be useful in conservation programmes for Japanese wild soybean and for the selection of accessions with favourable characteristics in future legume crop improvement efforts.


2014 ◽  
Vol 7 (12) ◽  
pp. 1788-1792 ◽  
Author(s):  
Chuchuan Fan ◽  
Yudi Wu ◽  
Qingyong Yang ◽  
Yang Yang ◽  
Qingwei Meng ◽  
...  

2020 ◽  
Vol 10 (9) ◽  
pp. 3309-3319 ◽  
Author(s):  
Ajith V Pankajam ◽  
Suman Dash ◽  
Asma Saifudeen ◽  
Abhishek Dutta ◽  
Koodali T Nishant

Abstract A growing body of evidence suggests that mutation rates exhibit intra-species specific variation. We estimated genome-wide loss of heterozygosity (LOH), gross chromosomal changes, and single nucleotide mutation rates to determine intra-species specific differences in hybrid and homozygous strains of Saccharomyces cerevisiae. The mutation accumulation lines of the S. cerevisiae hybrid backgrounds - S288c/YJM789 (S/Y) and S288c/RM11-1a (S/R) were analyzed along with the homozygous diploids RM11, S288c, and YJM145. LOH was extensive in both S/Y and S/R hybrid backgrounds. The S/Y background also showed longer LOH tracts, gross chromosomal changes, and aneuploidy. Short copy number aberrations were observed in the S/R background. LOH data from the S/Y and S/R hybrids were used to construct a LOH map for S288c to identify hotspots. Further, we observe up to a sixfold difference in single nucleotide mutation rates among the S. cerevisiae S/Y and S/R genetic backgrounds. Our results demonstrate LOH is common during mitotic divisions in S. cerevisiae hybrids and also highlight genome-wide differences in LOH patterns and rates of single nucleotide mutations between commonly used S. cerevisiae hybrid genetic backgrounds.


Sign in / Sign up

Export Citation Format

Share Document