Allelic diversity and geographical pattern at soybean Kunitz trypsin inhibitor single locus in Chinese wild soybean (Glycine soja Sieb. & Zucc.)

2010 ◽  
Vol 129 (3) ◽  
pp. 264-270 ◽  
Author(s):  
K. J. Wang ◽  
X. H. Li ◽  
Y. Takahata ◽  
T. Yamashita
Genome ◽  
2004 ◽  
Vol 47 (1) ◽  
pp. 9-14 ◽  
Author(s):  
Ke-Jing Wang ◽  
Tetsuro Yamashita ◽  
Masao Watanabe ◽  
Yoshihito Takahata

A novel variant of soybean Kunitz trypsin inhibitor (SKTI) was detected in 530 lines of wild soybean (Glycine soja). This variant showed an intermediate electrophoretic mobility between the Tia and Tic types. In isoelectric focusing polyacrylamide gel electrophoresis gels containing urea, this variant had a similar isoelectric point as that of Tia. The genetic analysis of SKTI bands in F2 seeds from crosses of the new variant type with Tia or Tic type showed that this variant type is controlled by a codominant allele at the SKTI locus. We propose the genetic symbol Tif for this novel variant. When the nucleotide sequence of the Tif gene was compared with those of other types of SKTI genes (Tia, Tib, and Tic), the sequence of Tif was identical to that of Tib with the exception of one A[Formula: see text]G transitional mutation occurring at position 676 of Tif. This mutation resulted in an amino acid change from Lys to Glu at the 178 residue. These results suggest that this variant is derived from Tib through a point mutation. In addition, we settled an inconsistency in the number of amino acid differences between Tia and Tib (eight or nine). Analysis of nucleotide and amino acid sequences revealed that Tib was different from Tia by nine amino acids.Key words: soybean Kunitz trypsin inhibitor, polymorphism, gene sequence, soybean, wild soybean.


2013 ◽  
Vol 132 (3) ◽  
pp. 311-316 ◽  
Author(s):  
Panneerselvam Krishnamurthy ◽  
Ram J. Singh ◽  
Chigen Tsukamoto ◽  
Jong Hyun Park ◽  
Jeong Dong Lee ◽  
...  

Genome ◽  
1995 ◽  
Vol 38 (4) ◽  
pp. 715-723 ◽  
Author(s):  
P. J. Maughan ◽  
M. A. Saghai Maroof ◽  
G. R. Buss

The objectives of this study were to (i) assess the extent of genetic variation in soybean microsatellites (simple sequence repeats or SSRs), (ii) assay for amplified sequence length polymorphisms (ASLPs), and (iii) evaluate the usefulness of SSRs and ASLPs as genetic markers. Five microsatellites detected a total of 79 variants (alleles) in a sample of 94 accessions of wild (Glycine soja) and cultivated soybean (G. max). F2 segregation analysis of four of the five microsatellites identified these variants (alleles) with four loci located in independent linkage groups. The number of alleles per microsatellite locus ranged from 5 to 21; to our knowledge these are the largest numbers of alleles for single Mendelian loci reported in soybean. Allelic diversity for the SSR loci was greater in wild than in cultivated soybean. Overall, 43 more SSR alleles were detected in wild than in cultivated soybean. These results indicate that SSRs are the marker of choice, especially for species with low levels of variation as detected by other types of markers. Two alleles were detected at each of the three ASLP loci examined. A total of six ASLP alleles were observed in cultivated soybean and five were observed in wild soybean; all alleles detected in wild soybean were present in cultivated soybean. Allelic diversity values for the ASLP loci were near previous estimates for restriction fragment length polymorphisms and therefore ASLPs may be useful as genetic markers in site-directed mapping.Key words: microsatellite, simple sequence repeat, soybean, amplified sequence length polymorphism, genetic mapping.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1001
Author(s):  
Jagadeesh Sundaramoorthy ◽  
Gyu Tae Park ◽  
Hyun Jo ◽  
Jeong-Dong Lee ◽  
Hak Soo Seo ◽  
...  

The enzyme flavonoid 3′,5′-hydroxylase (F3′5′H) plays an important role in producing anthocyanin pigments in soybean. Loss of function of the W1 locus encoding F3′5′H always produces white flowers. However, few color variations have been reported in wild soybean. In the present study, we isolated a new color variant of wild soybean accession (IT261811) with pinkish-white flowers. We found that the flower’s pinkish-white color is caused by w1-s3, a single recessive allele of W1. The SNP detected in the mutant caused amino acid substitution (A304S) in a highly conserved SRS4 domain of F3′5′H proteins. On the basis of the results of the protein variation effect analyzer (PROVEAN) tool, we suggest that this mutation may lead to hypofunctional F3′5′H activity rather than non-functional activity, which thereby results in its pinkish-white color.


2021 ◽  
Vol 19 (1) ◽  
pp. 35-43
Author(s):  
Awatsaya Chotekajorn ◽  
Takuyu Hashiguchi ◽  
Masatsugu Hashiguchi ◽  
Hidenori Tanaka ◽  
Ryo Akashi

AbstractWild soybean (Glycine soja) is a valuable genetic resource for soybean improvement. Seed composition profiles provide beneficial information for the effective conservation and utilization of wild soybeans. Therefore, this study aimed to assess the variation in free amino acid abundance in the seeds of wild soybean germplasm collected in Japan. The free amino acid content in the seeds from 316 accessions of wild soybean ranged from 0.965 to 5.987 mg/g seed dry weight (DW), representing a 6.2-fold difference. Three amino acids had the highest coefficient of variation (CV): asparagine (1.15), histidine (0.95) and glutamine (0.94). Arginine (0.775 mg/g DW) was the predominant amino acid in wild soybean seeds, whereas the least abundant seed amino acid was glutamine (0.008 mg/g DW). A correlation network revealed significant positive relationships among most amino acids. Wild soybean seeds from different regions of origin had significantly different levels of several amino acids. In addition, a significant correlation between latitude and longitude of the collection sites and the total free amino acid content of seeds was observed. Our study reports diverse phenotypic data on the free amino acid content in seeds of wild soybean resources collected from throughout Japan. This information will be useful in conservation programmes for Japanese wild soybean and for the selection of accessions with favourable characteristics in future legume crop improvement efforts.


2014 ◽  
Vol 37 (6) ◽  
pp. 449-456 ◽  
Author(s):  
Liang Zhao ◽  
Miaochun Fan ◽  
Dehui Zhang ◽  
Ruiping Yang ◽  
Feilong Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document