Prediction of heavy rainfall events over Rangamati, Bangladesh using high-resolution MM5 model

2014 ◽  
Vol 127 (2) ◽  
pp. 183-190 ◽  
Author(s):  
M. N. Ahasan ◽  
M. A. Mannan Chowdhury ◽  
D. A. Quadir
2015 ◽  
Vol 16 (2) ◽  
pp. 548-562 ◽  
Author(s):  
Auguste Gires ◽  
Ioulia Tchiguirinskaia ◽  
Daniel Schertzer ◽  
Alexis Berne

Abstract Data collected during four heavy rainfall events that occurred in Ardèche (France) with the help of a 2D video disdrometer (2DVD) are used to investigate the structure of the raindrop distribution in both space and time. A first type of analysis is based on the reconstruction of 36-m-height vertical rainfall columns above the measuring device. This reconstruction is obtained with the help of a ballistic hypothesis applied to 1-ms time step series. The corresponding snapshots are analyzed with the help of universal multifractals. For comparison, a similar analysis is performed on the time series with 1-ms time steps, as well as on time series of accumulation maps of N consecutive recorded drops (therefore with variable time steps). It turns out that the drop distribution exhibits a good scaling behavior in the range 0.5–36 m during the heaviest portion of the events, confirming the lack of empirical evidence of the widely used homogenous assumption for drop distribution. For smaller scales, drop positions seem to be homogeneously distributed. The notion of multifractal singularity is well illustrated by the very high-resolution time series.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1468 ◽  
Author(s):  
Aldo Greco ◽  
Davide Luciano De Luca ◽  
Elenio Avolio

An in-depth analysis of historical heavy rainfall fields clearly constitutes an important aspect in many related topics: as examples, mesoscale models for early warning systems and the definition of design event scenarios can be improved, with the consequent upgrading in the prediction of induced phenomena (mainly floods and landslides) into specific areas of interest. With this goal, in this work the authors focused on Calabria region (southern Italy) and classified the main precipitation systems through the analysis of selected heavy rainfall events from high resolution rain gauge network time series. Moreover, the authors investigated the relationships among the selected events and the main synoptic atmospheric patterns derived by the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 Reanalysis dataset, in order to assess the possible large-scale scenarios which can induce heavy rainfall events in the study area. The obtained results highlighted: (i) the importance of areal reduction factors, rainfall intensities and amounts in order to discriminate the investigated precipitations systems for the study area; (ii) the crucial role played by the position of the averaged low-pressure areas over the Mediterranean for the synoptic systems, and by low-level temperature for the convective systems.


2020 ◽  
Vol 27 (2) ◽  
Author(s):  
Raghavendra Ashrit ◽  
Kuldeep Sharma ◽  
Sushant Kumar ◽  
Anumeha Dube ◽  
S. Karunasagar ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1122
Author(s):  
Monica Ionita ◽  
Viorica Nagavciuc

The role of the large-scale atmospheric circulation in producing heavy rainfall events and floods in the eastern part of Europe, with a special focus on the Siret and Prut catchment areas (Romania), is analyzed in this study. Moreover, a detailed analysis of the socio-economic impacts of the most extreme flood events (e.g., July 2008, June–July 2010, and June 2020) is given. Analysis of the largest flood events indicates that the flood peaks have been preceded up to 6 days in advance by intrusions of high Potential Vorticity (PV) anomalies toward the southeastern part of Europe, persistent cut-off lows over the analyzed region, and increased water vapor transport over the catchment areas of Siret and Prut Rivers. The vertically integrated water vapor transport prior to the flood peak exceeds 300 kg m−1 s−1, leading to heavy rainfall events. We also show that the implementation of the Flood Management Plan in Romania had positive results during the 2020 flood event compared with the other flood events, when the authorities took several precaution measurements that mitigated in a better way the socio-economic impact and risks of the flood event. The results presented in this study offer new insights regarding the importance of large-scale atmospheric circulation and water vapor transport as drivers of extreme flooding in the eastern part of Europe and could lead to a better flood forecast and flood risk management.


2012 ◽  
Vol 69 (2) ◽  
pp. 521-537 ◽  
Author(s):  
Christopher A. Davis ◽  
Wen-Chau Lee

Abstract The authors analyze the mesoscale structure accompanying two multiday periods of heavy rainfall during the Southwest Monsoon Experiment and the Terrain-Induced Mesoscale Rainfall Experiment conducted over and near Taiwan during May and June 2008. Each period is about 5–6 days long with episodic heavy rainfall events within. These events are shown to correspond primarily to periods when well-defined frontal boundaries are established near the coast. The boundaries are typically 1 km deep or less and feature contrasts of virtual temperature of only 2°–3°C. Yet, owing to the extremely moist condition of the upstream conditionally unstable air, these boundaries appear to exert a profound influence on convection initiation or intensification near the coast. Furthermore, the boundaries, once established, are long lived, possibly reinforced through cool downdrafts and prolonged by the absence of diurnal heating over land in generally cloudy conditions. These boundaries are linked phenomenologically with coastal fronts that occur at higher latitudes.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 875
Author(s):  
Li Zhou ◽  
Lin Xu ◽  
Mingcai Lan ◽  
Jingjing Chen

Heavy rainfall events often cause great societal and economic impacts. The prediction ability of traditional extrapolation techniques decreases rapidly with the increase in the lead time. Moreover, deficiencies of high-resolution numerical models and high-frequency data assimilation will increase the prediction uncertainty. To address these shortcomings, based on the hourly precipitation prediction of Global/Regional Assimilation and Prediction System-Cycle of Hourly Assimilation and Forecast (GRAPES-CHAF) and Shanghai Meteorological Service-WRF ADAS Rapid Refresh System (SMS-WARR), we present an improved weighting method of time-lag-ensemble averaging for hourly precipitation forecast which gives more weight to heavy rainfall and can quickly select the optimal ensemble members for forecasting. In addition, by using the cross-magnitude weight (CMW) method, mean absolute error (MAE), root mean square error (RMSE) and correlation coefficient (CC), the verification results of hourly precipitation forecast for next six hours in Hunan Province during the 2019 typhoon Bailu case and heavy rainfall events from April to September in 2020 show that the revised forecast method can more accurately capture the characteristics of the hourly short-range precipitation forecast and improve the forecast accuracy and the probability of detection of heavy rainfall.


Author(s):  
Chanil Park ◽  
Seok-Woo Son ◽  
Joowan Kim ◽  
Eun-Chul Chang ◽  
Jung-Hoon Kim ◽  
...  

AbstractThis study identifies diverse synoptic weather patterns of warm-season heavy rainfall events (HREs) in South Korea. The HREs not directly connected to tropical cyclones (TCs) (81.1%) are typically associated with a midlatitude cyclone from eastern China, the expanded North Pacific high and strong southwesterly moisture transport in between. They are frequent both in the first (early summer) and second rainy periods (late summer) with impacts on the south coast and west of the mountainous region. In contrast, the HREs resulting from TCs (18.9%) are caused by the synergetic interaction between the TC and meandering midlatitude flow, especially in the second rainy period. The strong south-southeasterly moisture transport makes the southern and eastern coastal regions prone to the TC-driven HREs. By applying a self-organizing map algorithm to the non-TC HREs, their surface weather patterns are further classified into six clusters. Clusters 1 and 3 exhibit frontal boundary between the low and high with differing relative strengths. Clusters 2 and 5 feature an extratropical cyclone migrating from eastern China under different background sea-level pressure patterns. Cluster 4 is characterized by the expanded North Pacific high with no organized negative sea-level pressure anomaly, and cluster 6 displays a development of a moisture pathway between the continental and oceanic highs. Each cluster exhibits a distinct spatio-temporal occurrence distribution. The result provides useful guidance for predicting the HREs by depicting important factors to be differently considered depending on their synoptic categorization.


Sign in / Sign up

Export Citation Format

Share Document