The impact of land use and land cover change on regional climate over East Asia during 1980–2010 using a coupled model

Author(s):  
Fuqiang Cao ◽  
Li Dan ◽  
Zhuguo Ma ◽  
Tao Gao
2020 ◽  
Author(s):  
Ui-Yong Byun ◽  
Eun-Chul Chang

<p>  Many socioeconomic changes have occurred in East Asia in recent decades. Due to the economic structural change and economic growth, a large population has been concentrated in the cities, resulting in rapid urban expansion. Besides, the surrounding agricultural land for food resources has also expanded, and deforestation has also been active at the same time. These land use/land cover change (LULCC) significantly alter the energy properties of the land surface. Although land surface characteristics that have vigorous variability over time, it is common in a numerical model to treat the information as a static condition. In a numerical weather prediction model aiming at short-term forecasting, the ground characteristics without temporal change are valid; however, in the numerical climate model integrated over several decades, consideration of such variability is essential.<br>   In this study, we examine the impact of LULCC using the GRIMs (Global/Regional Integrated Model system), which covered regional climate simulation. Temporal change LULC over East Asia, especially cropland and urban, is constructed based on Land Use Harmonization data. Through the comparison of sensitivity experiments considered the LULCC overtime or not, it is confirmed that land surface effect on regional climate change over East Asia. </p>


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Kirsten L. Findell ◽  
Alexis Berg ◽  
Pierre Gentine ◽  
John P. Krasting ◽  
Benjamin R. Lintner ◽  
...  

2021 ◽  
Author(s):  
Peter Hoffmann ◽  
Vanessa Reinhart ◽  
Diana Rechid ◽  
Nathalie de Noblet-Ducoudré ◽  
Edouard L. Davin ◽  
...  

Abstract. Anthropogenic land-use and land cover change (LULCC) is a major driver of environmental changes. The biophysical impacts of these changes on the regional climate in Europe are currently extensively investigated within the WCRP CORDEX Flagship Pilot Study (FPS) LUCAS – "Land Use and Climate Across Scales" using an ensemble of different Regional Climate Models (RCMs) coupled with diverse Land Surface Models (LSMs). In order to investigate the impact of realistic LULCC on past and future climates, high-resolution datasets with observed LULCC and projected future LULCC scenarios are required as input for the RCM-LSM simulations. To account for these needs, we generated the LUCAS LUC Version 1.0 at 0.1° resolution for Europe Hoffmann et al. (2021b,c). The plant functional type distribution for the year 2015 (i.e. LANDMATE PFT dataset) is derived from the European Space Agency Climate Change Initiative Land Cover (ESA-CCI LC) dataset. Details about the conversion method based on a cross-walking procedure and the evaluation of the LANDMATE PFT dataset are given in the companion paper by Reinhart et al. (submitted). Subsequently, we applied the land-use change information from the Land-Use Harmonization 2 (LUH2) dataset, provided at 0.25° resolution as input for CMIP6 experiments, to derive realistic LULC distribution at high spatial resolution and at annual timesteps from 1950 to 2100. In order to convert land use and land management change information from LUH2 into changes in the PFT distribution, we developed a Land Use Translator (LUT) specific to the needs of RCMs. The annual PFT maps for Europe for the period 1950 to 2015 are derived from the historical LUH2 dataset by applying the LUT backward from 2015 to 1950. Historical changes in the forest type changes are considered using an additional European forest species dataset. The historical changes in the PFT distribution of LUCAS LUC follow closely the land use changes given by LUH2 but differ in some regions compared to remotely-sensed PFT time series. From 2016 onward, annual PFT maps for future land use change scenarios based on LUH2 are derived for different Shared Socioeconomic Pathways (SSPs) and Representative Concentration Pathways (RCPs) combinations used in the framework of the Coupled Modelling Intercomparison Project Phase 6 (CMIP6). The resulting LULCC maps can be applied as land use forcing to the next generation of RCM simulations for downscaling of CMIP6 results. The newly developed LUT is transferable to other CORDEX regions world-wide.


2019 ◽  
Vol 11 (24) ◽  
pp. 7083 ◽  
Author(s):  
Kristian Näschen ◽  
Bernd Diekkrüger ◽  
Mariele Evers ◽  
Britta Höllermann ◽  
Stefanie Steinbach ◽  
...  

Many parts of sub-Saharan Africa (SSA) are prone to land use and land cover change (LULCC). In many cases, natural systems are converted into agricultural land to feed the growing population. However, despite climate change being a major focus nowadays, the impacts of these conversions on water resources, which are essential for agricultural production, is still often neglected, jeopardizing the sustainability of the socio-ecological system. This study investigates historic land use/land cover (LULC) patterns as well as potential future LULCC and its effect on water quantities in a complex tropical catchment in Tanzania. It then compares the results using two climate change scenarios. The Land Change Modeler (LCM) is used to analyze and to project LULC patterns until 2030 and the Soil and Water Assessment Tool (SWAT) is utilized to simulate the water balance under various LULC conditions. Results show decreasing low flows by 6–8% for the LULC scenarios, whereas high flows increase by up to 84% for the combined LULC and climate change scenarios. The effect of climate change is stronger compared to the effect of LULCC, but also contains higher uncertainties. The effects of LULCC are more distinct, although crop specific effects show diverging effects on water balance components. This study develops a methodology for quantifying the impact of land use and climate change and therefore contributes to the sustainable management of the investigated catchment, as it shows the impact of environmental change on hydrological extremes (low flow and floods) and determines hot spots, which are critical for environmental development.


2017 ◽  
Vol 14 (22) ◽  
pp. 5053-5067 ◽  
Author(s):  
Wei Li ◽  
Philippe Ciais ◽  
Shushi Peng ◽  
Chao Yue ◽  
Yilong Wang ◽  
...  

Abstract. The use of dynamic global vegetation models (DGVMs) to estimate CO2 emissions from land-use and land-cover change (LULCC) offers a new window to account for spatial and temporal details of emissions and for ecosystem processes affected by LULCC. One drawback of LULCC emissions from DGVMs, however, is lack of observation constraint. Here, we propose a new method of using satellite- and inventory-based biomass observations to constrain historical cumulative LULCC emissions (ELUCc) from an ensemble of nine DGVMs based on emerging relationships between simulated vegetation biomass and ELUCc. This method is applicable on the global and regional scale. The original DGVM estimates of ELUCc range from 94 to 273 PgC during 1901–2012. After constraining by current biomass observations, we derive a best estimate of 155 ± 50 PgC (1σ Gaussian error). The constrained LULCC emissions are higher than prior DGVM values in tropical regions but significantly lower in North America. Our emergent constraint approach independently verifies the median model estimate by biomass observations, giving support to the use of this estimate in carbon budget assessments. The uncertainty in the constrained ELUCc is still relatively large because of the uncertainty in the biomass observations, and thus reduced uncertainty in addition to increased accuracy in biomass observations in the future will help improve the constraint. This constraint method can also be applied to evaluate the impact of land-based mitigation activities.


Sign in / Sign up

Export Citation Format

Share Document