Climate change impact on the initial development of tropical forest species: a multi-model assessment

Author(s):  
Fernando Yuri da Silva Reis ◽  
Fabrina Bolzan Martins ◽  
Roger Rodrigues Torres ◽  
Gabriel Wilson Lorena Florêncio ◽  
Jefferson Martiniano Cassemiro ◽  
...  
2012 ◽  
Vol 60 (3) ◽  
pp. 152-161 ◽  
Author(s):  
Martin Hanel ◽  
Adam Vizina ◽  
Petr Máca ◽  
Jiří Pavlásek

A Multi-Model Assessment of Climate Change Impact on Hydrological Regime in the Czech RepublicIn present paper we assess the climate change impact on mean runoff between the periods 1961-1990 (control period) and 2070-2099 (scenario period) in the Czech Republic. Hydrological balance is modelled with a conceptual hydrological model BILAN at 250 catchments of different sizes and climatic conditions. Climate change scenarios are derived using simple delta approach, i.e. observed series of precipitation, temperature and relative air humidity are perturbed in order to give the same changes between the control and scenario period as in the ensemble of 15 transient regional climate model (RCM) simulations. The parameters of the hydrological model are for each catchment estimated using observed data. These parameters are subsequently used to derive discharge series under climate change conditions for each RCM simulation. Although the differences in the absolute values of the changes in runoff are considerable, robust patterns of changes can be identified. The majority of the scenarios project an increase in winter runoff in the northern part of the Czech Republic, especially at catchments with high elevation. The scenarios also agree on a decrease in spring and summer runoff in most of the catchments.


Author(s):  
Thibault Lemaitre-Basset ◽  
Lila Collet ◽  
Guillaume Thirel ◽  
Juraj Parajka ◽  
Guillaume Evin ◽  
...  

2021 ◽  
Vol 255 ◽  
pp. 107005
Author(s):  
Sara Masia ◽  
Antonio Trabucco ◽  
Donatella Spano ◽  
Richard L. Snyder ◽  
Janez Sušnik ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1153
Author(s):  
Shih-Jung Wang ◽  
Cheng-Haw Lee ◽  
Chen-Feng Yeh ◽  
Yong Fern Choo ◽  
Hung-Wei Tseng

Climate change can directly or indirectly influence groundwater resources. The mechanisms of this influence are complex and not easily quantified. Understanding the effect of climate change on groundwater systems can help governments adopt suitable strategies for water resources. The baseflow concept can be used to relate climate conditions to groundwater systems for assessing the climate change impact on groundwater resources. This study applies the stable baseflow concept to the estimation of the groundwater recharge in ten groundwater regions in Taiwan, under historical and climate scenario conditions. The recharge rates at the main river gauge stations in the groundwater regions were assessed using historical data. Regression equations between rainfall and groundwater recharge quantities were developed for the ten groundwater regions. The assessment results can be used for recharge evaluation in Taiwan. The climate change estimation results show that climate change would increase groundwater recharge by 32.6% or decrease it by 28.9% on average under the climate scenarios, with respect to the baseline quantity in Taiwan. The impact of climate change on groundwater systems may be positive. This study proposes a method for assessing the impact of climate change on groundwater systems. The assessment results provide important information for strategy development in groundwater resources management.


Sign in / Sign up

Export Citation Format

Share Document