Long-term basin-scale comparison of two high-resolution satellite-based remote sensing datasets for assessing rainfall and erosivity in a basin in the Brazilian semiarid region

Author(s):  
Célia Soares de Brito ◽  
Richarde Marques da Silva ◽  
Celso Augusto Guimarães Santos ◽  
Reginaldo Moura Brasil Neto ◽  
Victor Hugo Rabelo Coelho
Nativa ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 708
Author(s):  
Caio Victor Santos Silva ◽  
Jhon Lennon Bezerra da Silva ◽  
Geber Barbosa De Albuquerque Moura ◽  
Pabrício Marcos Oliveira Lopes ◽  
Cristina Rodrigues Nascimento ◽  
...  

São necessárias medidas que visem à proteção e conservação dos recursos hídricos e naturais de forma rápida e eficiente. As técnicas de sensoriamento remoto são essenciais para o monitoramento ambiental dos recursos no semiárido no espaço e no tempo. Objetivou-se monitorar e analisar à dinâmica da cobertura vegetal através da variabilidade espaço-temporal do albedo da superfície e índices de vegetação em região de Caatinga do semiárido brasileiro por sensoriamento remoto. A área de estudo é o município de Arcoverde, localizado no semiárido de Pernambuco. O estudo foi desenvolvido através de seis imagens orbitais do Landsat-5 do sensor TM. O processamento digital dos parâmetros biofísicos foi realizado pelo algoritmo SEBAL. Os resultados foram analisados através da estatística descritiva e quanto a sua variabilidade. Áreas possivelmente degradadas foram identificadas pelos altos valores de albedo e índices de vegetação significativamente menores, localizadas à sudoeste e noroeste da região. Os índices apresentaram comportamento similares, principalmente no período seco, com baixos valores sendo próximos de zero, áreas afetadas pelo período de seca no semiárido. O SAVI apresentou maior precisão, destacando melhor resposta espectral da vegetação. O sensoriamento remoto promoveu monitoramento espaço-temporal adequado, destacando principalmente o período classificado como climaticamente seco através do albedo e índices de vegetação.Palavras-chave: Caatinga; NDVI; SAVI; mudanças ambientais; SEBAL. MONITORING OF VEGETATION COVER BY REMOTE SENSING IN BRAZILIAN SEMIARID THROUGH VEGETATION INDICES ABSTRACT: Measures are needed aimed at the protection and conservation of water and natural resources quickly and efficiently. Remote sensing techniques are essential for the environmental monitoring of resources in the semiarid region in space and time. Aimed to monitor and analyze the dynamics of vegetation cover through the spatial-temporal variability of the surface albedo and indices of vegetation in the Caatinga region of the Brazilian semiarid by remote sensing. The study area is the municipality of Arcoverde, located in the semiarid of Pernambuco. The study was developed through six orbital images of Landsat-5 of the TM sensor. The digital processing of the biophysical parameters was performed by the SEBAL algorithm. The results were analyzed through descriptive statistics and their variability. Possibly degraded areas were identified by high albedo values and significantly lower vegetation indices, located in the southwest and northwest of the region. The indexes showed similar behavior, mainly in the dry period, with low values being close to zero, areas affected by the dry period in the semiarid. The SAVI presented higher accuracy, highlighting better spectral response of the vegetation. Remote sensing promoted adequate space-time monitoring, highlighting mainly the period classified as climatically dry through the albedo and vegetation indexes.Keywords: Caatinga; NDVI; SAVI; environmental changes; SEBAL.


2020 ◽  
Author(s):  
Sigrid Roessner ◽  
Robert Behling ◽  
Mahdi Motagh ◽  
Hans Ulrich-wetzel

<p>Landslides represent a worldwide natural hazard and often occur as cascading effects related to triggering events, such as earthquakes and hydrometeorological extremes. Recent examples are the Kaikoura earthquake in New Zealand (November 2016), the Gorkha earthquake in Nepal (April/May 2015), and the Typhoon Morakot in Taiwan (August 2009) as well as less intense rainfall events persisting over unusually long periods of time as observed for Central Asia (spring 2017) and Iran (spring 2019). Each of these events has caused thousands of landslides that account substantially to the primary disaster’s impact. Moreover, their initial failure usually represents the onset of long-term progressing slope destabilization leading to multiple reactivations and thus to long-term increased hazard and risk. Therefore, regular systematic high-resolution monitoring of landslide prone regions is of key importance for characterization, understanding and modelling of spatiotemporal landslide evolution in the context of different triggering and predisposing settings. Because of the large extent of the affected areas of up to several ten thousands km<sup>2</sup>, the use of multi-temporal and multi-scale remote sensing methods is of key importance for large area process analysis. In this context, new opportunities have opened up with the increasing availability of satellite remote sensing data of suitable spatial and temporal resolution (Sentinels, Planet) as well as the advances in UAV based very high resolution monitoring and mapping.</p><p>During the last decade, we have been pursuing extensive methodological developments in remote sensing based time series analysis including optical and radar observations with the goal of performing large area and at the same time detailed spatiotemporal analysis of landslide prone regions. These developments include automated post-failure landslide detection and mapping as well as assessment of the kinematics of pre- and post-failure slope evolution.  Our combined optical and radar remote sensing approaches aim at an improved understanding of spatiotemporal dynamics and complexities related to evolution of landslide prone slopes at different spatial and temporal scales.  In this context, we additionally integrate UAV-based observation for deriving volumetric changes also related to globally available DEM products, such as SRTM and ALOS.  </p><p>We present results for selected settings comprising large area co-seismic landslide occurrence related to the Kaikoura 2016 and the Nepal 2015 earthquakes. For the latter one we also analyzed annual pre- and post-seismic monsoon related landslide activity contributing to a better understanding of the interplay between these main triggering factors. Moreover, we report on ten years of large area systematic landslide monitoring in Southern Kyrgyzstan resulting in a multi-temporal regional landslide inventory of so far unprecedented spatiotemporal detail and completeness forming the basis for further analysis of the obtained landslide concentration patterns. We also present first results of our analysis of landslides triggered by intense rainfall and flood events in spring of 2019 in the North of Iran. We conclude that in all cases, the obtained results are crucial for improved landslide prediction and reduction of future landslide impact. Thus, our methodological developments represent an important contribution towards improved hazard and risk assessment as well as rapid mapping and early warning</p>


2010 ◽  
Vol 11 (2) ◽  
pp. 253-275 ◽  
Author(s):  
Justin Sheffield ◽  
Eric F. Wood ◽  
Francisco Munoz-Arriola

Abstract The development and evaluation of a long-term high-resolution dataset of potential and actual evapotranspiration for Mexico based on remote sensing data are described. Evapotranspiration is calculated using a modified version of the Penman–Monteith algorithm, with input radiation and meteorological data from the International Satellite Cloud Climatology Project (ISCCP) and vegetation distribution derived from Advanced Very High Resolution Radiometer (AVHRR) products. The ISCCP data are downscaled to ⅛° resolution using statistical relationships with data from the North American Regional Reanalysis (NARR). The final product is available at ⅛°, daily, for 1984–2006 for all Mexico. Comparisons are made with the NARR offline land surface model and measurements from approximately 1800 pan stations. The remote sensing estimate follows well the seasonal cycle and spatial pattern of the comparison datasets, with a peak in late summer at the height of the North American monsoon and highest values in low-lying and coastal regions. The spatial average over Mexico is biased low by about 0.3 mm day−1, with a monthly rmse of about 0.5 mm day−1. The underestimation may be related to the lack of a model for canopy evaporation, which is estimated to be up to 30% of total evapotranspiration. Uncertainties in both the remote sensing–based estimates (because of input data uncertainties) and the true value of evapotranspiration (represented by the spread in the comparison datasets) are up to 0.5 and 1.2 mm day−1, respectively. This study is a first step in quantifying the long-term variation in global land evapotranspiration from remote sensing data.


2020 ◽  
Vol 24 (3) ◽  
pp. 1565-1586 ◽  
Author(s):  
Imeshi Weerasinghe ◽  
Wim Bastiaanssen ◽  
Marloes Mul ◽  
Li Jia ◽  
Ann van Griensven

Abstract. Evapotranspiration (ET) is one of the most important components in the water cycle. However, there are relatively few direct measurements of ET available (e.g. using flux towers). Nevertheless, various disciplines, ranging from hydrology to agricultural and climate sciences, require information on the spatial and temporal distribution of ET at regional and global scales. Due to the limited data availability, attention has turned toward satellite-based products to fill observational gaps. Various data products, including remote sensing (RS) products, have been developed and provide a large range of ET estimations. Across Africa, only a limited number of flux towers are available; hence, they are insufficient for the systematic evaluation of the available ET products. Thus, in this study, we conduct a methodological evaluation of nine existing RS-derived ET products as well as other available ET products in order to evaluate their reliability at the basin scale. A general water balance (WB) approach is used, where ET is equal to precipitation minus discharge for long-term averages. Firstly, ET products are compared with WB-inferred ET (ETWB) for basins that do not show long-term trends. The ET products and the calculated ETWB are then evaluated against the Budyko equation, which is used as a reference condition. The spatial characteristics of the ET products are finally assessed via the analysis of selected land cover elements across Africa: forests, irrigated areas and water bodies. Additionally, a cluster analysis is conducted to identify similarities between individual ET products. The results show that CMRSET, SSEBop and WaPOR rank highest in terms of the estimation of the long-term average mean ET across basins, with low biases and good spatial variability across Africa. GLEAM consistently ranks lowest in most evaluation criteria, although it has the longest available time period. Each product shows specific advantages and disadvantages. Depending on the study in question, at least one product should be suitable for a particular requirement. The reader should bear in mind that many products suffer from a large bias. Based on the evaluation criteria in this study, the three highest ranked products, CMRSET, SSEBop and WaPOR, would suit many users' needs due to the low biases and good spatial variability across Africa.


2014 ◽  
Vol 35 (10) ◽  
pp. 3683-3699 ◽  
Author(s):  
Cristian Epifânio de Toledo ◽  
José Carlos de Araújo ◽  
Cicero Lima de Almeida

Author(s):  
Júlia Alves Menezes ◽  
Ana Paula Madureira ◽  
Rhavena Barbosa dos Santos ◽  
Isabela de Brito Duval ◽  
Pedro Regoto ◽  
...  

Health determinants might play an important role in shaping the impacts related to long-term disasters such as droughts. Understanding their distribution in populated dry regions may help to map vulnerabilities and set coping strategies for current and future threats to human health. The aim of the study was to identify the most vulnerable municipalities of the Brazilian semiarid region when it comes to the relationship between drought, health, and their determinants using a multidimensional index. From a place-based framework, epidemiological, socio-economic, rural, and health infrastructure data were obtained for 1135 municipalities in the Brazilian semiarid region. An exploratory factor analysis was used to reduce 32 variables to four independent factors and compute a Health Vulnerability Index. The health vulnerability was modulated by social determinants, rural characteristics, and access to water in this semiarid region. There was a clear distinction between municipalities with the highest human welfare and economic development and those municipalities with the worst living conditions and health status. Spatial patterns showed a cluster of the most vulnerable municipalities in the western, eastern, and northeastern portions of the semiarid region. The spatial visualization of the associated vulnerabilities supports decision making on health promotion policies that should focus on reducing social inequality. In addition, policymakers are presented with a simple tool to identify populations or areas with the worst socioeconomic and health conditions, which can facilitate the targeting of actions and resources on a more equitable basis. Further, the results contribute to the understanding of social determinants that may be related to medium- and long-term health outcomes in the region.


Sign in / Sign up

Export Citation Format

Share Document