A New York isolate of Soil-borne wheat mosaic virus differs considerably from the Nebraska type strain in the nucleotide sequences of various coding regions but not in the deduced amino acid sequences

2002 ◽  
Vol 147 (3) ◽  
pp. 617-625 ◽  
Author(s):  
R. Koenig ◽  
G. C. Bergstrom ◽  
S. M. Gray ◽  
S. Loss
Plant Disease ◽  
1997 ◽  
Vol 81 (9) ◽  
pp. 1095-1095 ◽  
Author(s):  
P. L. Ramos ◽  
O. Guerra ◽  
R. Peral ◽  
P. Oramas ◽  
R. G. Guevara ◽  
...  

Geminiviruses have become the most important virus group affecting tomatoes (Lycopersicon lycopersicum (L.) Karsten) in Cuba since they have been detected in all tomato-producing areas, causing serious losses. Recently, a whitefly-transmitted, monopartite geminivirus was detected in Cuba and identified as tomato yellow leaf curl virus-Israel (TYLCV-Is) (1). Samples collected from the main tomato-producing areas during the period 1995 to1996 were further analyzed by polymerase chain reaction (PCR) with degenerate primers (PAL1v1978 and PAR1c496) (2). Whereas in samples from most areas only TYLCV was detected, in some samples from the Havana area, two DNA fragments (approximately 1.4 and 1.1 kb) were amplified by PCR. The larger fragment was identified as part of the TYLCV-Is genome, confirming the previous report (1). The 1.1-kb fragment was cloned and its nucleotide sequence suggested that a new bipartite geminivirus was also present in those tomato samples. To clone the entire genome, tomato plants were inoculated by biolistics with DNA extract from field samples. After symptom expression, a viral DNA-enriched preparation from the inoculated tomatoes was independently digested with several restriction enzymes and the products were ligated into pZero plasmid (Invitrogen, San Diego, CA). Several clones in the 2.6-kb size range were characterized by restriction mapping and hybridization against component A and B heterologous probes. Two clones were selected as containing putative A and B components and their infectivity was tested by biolistic inoculation of tomato and pepper plants. The inoculated tomatoes developed a mild mottle in the younger leaves, whereas no symptoms were visible on the inoculated pepper plants. However, the presence of viral DNA was confirmed in both tomatoes and peppers by Southern blot hybridization analysis with A- and B-specific probes. Partial sequences of both components were obtained and their analysis showed that both components shared a 170-bases common region with a 95% identity. In addition, the nucleotide sequences of two open reading frames, one in each component (AC1 and BC1), were determined and compared with geminivirus sequences deposited in Gen-Bank. A dendogram generated with the CLUSTAL program and obtained with the AC1 and BC1 amino acid sequences, placed the new geminivirus in a cluster with tomato mottle virus (ToMoV; accession nos. L14460, L14461), Abutilon mosaic virus (AbMV; X15983, X15984), potato yellow mosaic virus (PYMV; D00940, D00941), and bean dwarf mosaic virus (BDMV; M88179, M88180). The percentages of identity obtained with the amino acid sequences were as follows. For AC1: ToMoV, 87%; PYMV, 79.5%; BDMV, 78.7%; and AbMV, 78%. For BC1 protein: BDMV, 92.8%; ToMoV, 89.1%; PYMV, 88.1%; and AbMV, 67.5%. In addition, the sequences were compared with partial nucleotide sequences (AC1, coat protein [CP], and common region) of a bipartite geminivirus affecting tomatoes in Jamaica (accession nos. U83855, U83854, and U83850). Interestingly, the common regions showed a higher percentage of identity (88%) than the CP and AC1 partial nucleotide sequences (86 and 74%, respectively). These data suggest that the virus reported here is a new geminivirus and the first bipartite geminivirus reported in Cuba. Thus, the name of Taino tomato mottle virus is proposed. (Taino refers to the name of the inhabitants of Cuba at the time of Columbus's arrival in the Caribbean). References: (1) P. L. Ramos et al. Plant Dis. 80:1208, 1996. (2) M. R. Rojas et al. Plant Dis. 77:340, 1993.


2001 ◽  
Vol 45 (9) ◽  
pp. 2559-2562 ◽  
Author(s):  
Rui Kano ◽  
Ken Okabayashi ◽  
Yuka Nakamura ◽  
Shinichi Watanabe ◽  
Atsuhiko Hasegawa

ABSTRACT The expression of the ubiquitin (Ub) gene in dermatophytes was examined for its relation to resistance against the antifungal drug fluconazole. The nucleotide sequences and the deduced amino acid sequences of the Ub gene in Microsporum canis were proven to be 99% similar to those of the Ub gene in Trichophyton mentagrophytes. Expression of mRNA of Ub in M. canisand T. mentagrophytes was enhanced when the fungi were cultured with fluconazole. The antifungal activity of fluconazole against these dermatophytes was increased in the presence of Ub proteasome inhibitor.


1994 ◽  
Vol 299 (2) ◽  
pp. 545-552 ◽  
Author(s):  
Y Deyashiki ◽  
A Ogasawara ◽  
T Nakayama ◽  
M Nakanishi ◽  
Y Miyabe ◽  
...  

Human liver contains two dihydrodiol dehydrogenases, DD2 and DD4, associated with 3 alpha-hydroxysteroid dehydrogenase activity. We have raised polyclonal antibodies that cross-reacted with the two enzymes and isolated two 1.2 kb cDNA clones (C9 and C11) for the two enzymes from a human liver cDNA library using the antibodies. The clones of C9 and C11 contained coding sequences corresponding to 306 and 321 amino acid residues respectively, but lacked 5′-coding regions around the initiation codon. Sequence analyses of several peptides obtained by enzymic and chemical cleavages of the two purified enzymes verified that the C9 and C11 clones encoded DD2 and DD4 respectively, and further indicated that the sequence of DD2 had at least additional 16 residues upward from the N-terminal sequence deduced from the cDNA. There was 82% amino acid sequence identity between the two enzymes, indicating that the enzymes are genetic isoenzymes. A computer-based comparison of the cDNAs of the isoenzymes with the DNA sequence database revealed that the nucleotide and amino acid sequences of DD2 and DD4 are virtually identical with those of human bile-acid binder and human chlordecone reductase cDNAs respectively.


2015 ◽  
Vol 45 (12) ◽  
pp. 2197-2200 ◽  
Author(s):  
Thor Vinícius Martins Fajardo ◽  
Monique Bezerra Nascimento ◽  
Marcelo Eiras ◽  
Osmar Nickel ◽  
Gilvan Pio-Ribeiro

ABSTRACT: There is no molecular characterization of Brazilian isolates of Prunus necrotic ringspot virus (PNRSV), except for those infecting peach. In this research, the causal agent of rose mosaic was determined and the movement (MP) and coat (CP) protein genes of a PNRSV isolate from rose were molecularly characterized for the first time in Brazil. The nucleotide and deduced amino acid sequences of MP and CP complete genes were aligned and compared with other isolates. Molecular analysis of the MP and CP nucleotide sequences of a Brazilian PNRSV isolate from rose and others from this same host showed highest identities of 96.7% and 98.6%, respectively, and Rose-Br isolate was classified in PV32 group.


1980 ◽  
Vol 187 (1) ◽  
pp. 65-74 ◽  
Author(s):  
D Penny ◽  
M D Hendy ◽  
L R Foulds

We have recently reported a method to identify the shortest possible phylogenetic tree for a set of protein sequences [Foulds Hendy & Penny (1979) J. Mol. Evol. 13. 127–150; Foulds, Penny & Hendy (1979) J. Mol. Evol. 13, 151–166]. The present paper discusses issues that arise during the construction of minimal phylogenetic trees from protein-sequence data. The conversion of the data from amino acid sequences into nucleotide sequences is shown to be advantageous. A new variation of a method for constructing a minimal tree is presented. Our previous methods have involved first constructing a tree and then either proving that it is minimal or transforming it into a minimal tree. The approach presented in the present paper progressively builds up a tree, taxon by taxon. We illustrate this approach by using it to construct a minimal tree for ten mammalian haemoglobin alpha-chain sequences. Finally we define a measure of the complexity of the data and illustrate a method to derive a directed phylogenetic tree from the minimal tree.


1963 ◽  
Vol 18 (12) ◽  
pp. 1032-1049 ◽  
Author(s):  
B. Wittmann-Liebold ◽  
H. G. Wittmann

The amino acid sequence of dahlemense, a naturally occuring strain of tobacco mosaic virus, has been determined and compared with that of the strain vulgare (Fig. 7). In this communication the experimental details are given for the elucidation of the amino acid sequences within two tryptic peptides with 65 amino acids.


Sign in / Sign up

Export Citation Format

Share Document