scholarly journals TableRobot: an automatic annotation method for heterogeneous tables

Author(s):  
Guibin Wu ◽  
Junjie Zhou ◽  
Yongping Xiong ◽  
Chaoyi Zhou ◽  
Chong Li

AbstractUsing deep learning networks to recognize the table attracts lots of attention. However, due to the lack of high-quality table datasets, the performance of using deep learning networks is limited. Therefore, TableRobot has been proposed, an automatic annotation method for heterogeneous tables. To be more specific, the annotations of table consist of the coordinates of the item block and the mapping relationship between item blocks and table cells. In order to transform the task, we successfully design an algorithm based on the greedy approach to find the optimum solution. To evaluate the performance of TableRobot, we check the annotation data of 3000 tables collected from the LaTex documents in arXiv.com, and the result shows that TableRobot can generate table annotation datasets with the accuracy of 93.2%. Besides, the table annotation data is feed into GraphTSR which is a state-of-the-art table recognition graph neural network, and the F1 value of the network has increased by nearly 10% compared with before.

Author(s):  
Yuheng Hu ◽  
Yili Hong

Residents often rely on newspapers and television to gather hyperlocal news for community awareness and engagement. More recently, social media have emerged as an increasingly important source of hyperlocal news. Thus far, the literature on using social media to create desirable societal benefits, such as civic awareness and engagement, is still in its infancy. One key challenge in this research stream is to timely and accurately distill information from noisy social media data streams to community members. In this work, we develop SHEDR (social media–based hyperlocal event detection and recommendation), an end-to-end neural event detection and recommendation framework with a particular use case for Twitter to facilitate residents’ information seeking of hyperlocal events. The key model innovation in SHEDR lies in the design of the hyperlocal event detector and the event recommender. First, we harness the power of two popular deep neural network models, the convolutional neural network (CNN) and long short-term memory (LSTM), in a novel joint CNN-LSTM model to characterize spatiotemporal dependencies for capturing unusualness in a region of interest, which is classified as a hyperlocal event. Next, we develop a neural pairwise ranking algorithm for recommending detected hyperlocal events to residents based on their interests. To alleviate the sparsity issue and improve personalization, our algorithm incorporates several types of contextual information covering topic, social, and geographical proximities. We perform comprehensive evaluations based on two large-scale data sets comprising geotagged tweets covering Seattle and Chicago. We demonstrate the effectiveness of our framework in comparison with several state-of-the-art approaches. We show that our hyperlocal event detection and recommendation models consistently and significantly outperform other approaches in terms of precision, recall, and F-1 scores. Summary of Contribution: In this paper, we focus on a novel and important, yet largely underexplored application of computing—how to improve civic engagement in local neighborhoods via local news sharing and consumption based on social media feeds. To address this question, we propose two new computational and data-driven methods: (1) a deep learning–based hyperlocal event detection algorithm that scans spatially and temporally to detect hyperlocal events from geotagged Twitter feeds; and (2) A personalized deep learning–based hyperlocal event recommender system that systematically integrates several contextual cues such as topical, geographical, and social proximity to recommend the detected hyperlocal events to potential users. We conduct a series of experiments to examine our proposed models. The outcomes demonstrate that our algorithms are significantly better than the state-of-the-art models and can provide users with more relevant information about the local neighborhoods that they live in, which in turn may boost their community engagement.


Recently, DDoS attacks is the most significant threat in network security. Both industry and academia are currently debating how to detect and protect against DDoS attacks. Many studies are provided to detect these types of attacks. Deep learning techniques are the most suitable and efficient algorithm for categorizing normal and attack data. Hence, a deep neural network approach is proposed in this study to mitigate DDoS attacks effectively. We used a deep learning neural network to identify and classify traffic as benign or one of four different DDoS attacks. We will concentrate on four different DDoS types: Slowloris, Slowhttptest, DDoS Hulk, and GoldenEye. The rest of the paper is organized as follow: Firstly, we introduce the work, Section 2 defines the related works, Section 3 presents the problem statement, Section 4 describes the proposed methodology, Section 5 illustrate the results of the proposed methodology and shows how the proposed methodology outperforms state-of-the-art work and finally Section VI concludes the paper.


2021 ◽  
pp. 1-17
Author(s):  
Hania H. Farag ◽  
Lamiaa A. A. Said ◽  
Mohamed R. M. Rizk ◽  
Magdy Abd ElAzim Ahmed

COVID-19 has been considered as a global pandemic. Recently, researchers are using deep learning networks for medical diseases’ diagnosis. Some of these researches focuses on optimizing deep learning neural networks for enhancing the network accuracy. Optimizing the Convolutional Neural Network includes testing various networks which are obtained through manually configuring their hyperparameters, then the configuration with the highest accuracy is implemented. Each time a different database is used, a different combination of the hyperparameters is required. This paper introduces two COVID-19 diagnosing systems using both Residual Network and Xception Network optimized by random search in the purpose of finding optimal models that give better diagnosis rates for COVID-19. The proposed systems showed that hyperparameters tuning for the ResNet and the Xception Net using random search optimization give more accurate results than other techniques with accuracies 99.27536% and 100 % respectively. We can conclude that hyperparameters tuning using random search optimization for either the tuned Residual Network or the tuned Xception Network gives better accuracies than other techniques diagnosing COVID-19.


2018 ◽  
Author(s):  
John-William Sidhom ◽  
Drew Pardoll ◽  
Alexander Baras

AbstractMotivationThe immune system has potential to present a wide variety of peptides to itself as a means of surveillance for pathogenic invaders. This means of surveillances allows the immune system to detect peptides derives from bacterial, viral, and even oncologic sources. However, given the breadth of the epitope repertoire, in order to study immune responses to these epitopes, investigators have relied on in-silico prediction algorithms to help narrow down the list of candidate epitopes, and current methods still have much in the way of improvement.ResultsWe present Allele-Integrated MHC (AI-MHC), a deep learning architecture with improved performance over the current state-of-the-art algorithms in human Class I and Class II MHC binding prediction. Our architecture utilizes a convolutional neural network that improves prediction accuracy by 1) allowing one neural network to be trained on all peptides for all alleles of a given class of MHC molecules by making the allele an input to the net and 2) introducing a global max pooling operation with an optimized kernel size that allows the architecture to achieve translational invariance in MHC-peptide binding analysis, making it suitable for sequence analytics where a frame of interest needs to be learned in a longer, variable length sequence. We assess AI-MHC against internal independent test sets and compare against all algorithms in the IEDB automated server benchmarks, demonstrating our algorithm achieves state-of-the-art for both Class I and Class II prediction.Availability and ImplementationAI-MHC can be used via web interface at baras.pathology.jhu.edu/[email protected]


2021 ◽  
Author(s):  
Noor Ahmad ◽  
Muhammad Aminu ◽  
Mohd Halim Mohd Noor

Deep learning approaches have attracted a lot of attention in the automatic detection of Covid-19 and transfer learning is the most common approach. However, majority of the pre-trained models are trained on color images, which can cause inefficiencies when fine-tuning the models on Covid-19 images which are often grayscale. To address this issue, we propose a deep learning architecture called CovidNet which requires a relatively smaller number of parameters. CovidNet accepts grayscale images as inputs and is suitable for training with limited training dataset. Experimental results show that CovidNet outperforms other state-of-the-art deep learning models for Covid-19 detection.


Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 128
Author(s):  
Zhenwei Guan ◽  
Feng Min ◽  
Wei He ◽  
Wenhua Fang ◽  
Tao Lu

Forest fire detection from videos or images is vital to forest firefighting. Most deep learning based approaches rely on converging image loss, which ignores the content from different fire scenes. In fact, complex content of images always has higher entropy. From this perspective, we propose a novel feature entropy guided neural network for forest fire detection, which is used to balance the content complexity of different training samples. Specifically, a larger weight is given to the feature of the sample with a high entropy source when calculating the classification loss. In addition, we also propose a color attention neural network, which mainly consists of several repeated multiple-blocks of color-attention modules (MCM). Each MCM module can extract the color feature information of fire adequately. The experimental results show that the performance of our proposed method outperforms the state-of-the-art methods.


2021 ◽  
Author(s):  
Liangrui Pan ◽  
boya ji ◽  
Xiaoqi wang ◽  
shaoliang peng

The use of chest X-ray images (CXI) to detect Severe Acute Respiratory Syndrome Coronavirus 2 (SARS CoV-2) caused by Coronavirus Disease 2019 (COVID-19) is life-saving important for both patients and doctors. This research proposed a multi-channel feature deep neural network algorithm to screen people infected with COVID-19. The algorithm integrates data oversampling technology and a multi-channel feature deep neural network model to carry out the training process in an end-to-end manner. In the experiment, we used a publicly available CXI database with 10,192 Normal, 6012 Lung Opacity (Non-COVID lung infection), and 1345 Viral Pneumonia images. Compared with traditional deep learning models (Densenet201, ResNet50, VGG19, GoogLeNet), the MFDNN model obtains an average test accuracy of 93.19% in all data. Furthermore, in each type of screening, the precision, recall, and F1 Score of the MFDNN model are also better than traditional deep learning networks. Secondly, compared with the latest CoroDet model, the MFDNN algorithm is 1.91% higher than the CoroDet model in the experiment of detecting the four categories of COVID19 infected persons. Finally, our experimental code will be placed at https://github.com/panliangrui/covid19.


Author(s):  
Parvathi R. ◽  
Pattabiraman V.

This chapter proposes a hybrid method for classification of the objects based on deep neural network and a similarity-based search algorithm. The objects are pre-processed with external conditions. After pre-processing and training different deep learning networks with the object dataset, the authors compare the results to find the best model to improve the accuracy of the results based on the features of object images extracted from the feature vector layer of a neural network. RPFOREST (random projection forest) model is used to predict the approximate nearest images. ResNet50, InceptionV3, InceptionV4, and DenseNet169 models are trained with this dataset. A proposal for adaptive finetuning of the deep learning models by determining the number of layers required for finetuning with the help of the RPForest model is given, and this experiment is conducted using the Xception model.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jie Shen ◽  
Mengxi Xu ◽  
Xinyu Du ◽  
Yunbo Xiong

Video surveillance is an important data source of urban computing and intelligence. The low resolution of many existing video surveillance devices affects the efficiency of urban computing and intelligence. Therefore, improving the resolution of video surveillance is one of the important tasks of urban computing and intelligence. In this paper, the resolution of video is improved by superresolution reconstruction based on a learning method. Different from the superresolution reconstruction of static images, the superresolution reconstruction of video is characterized by the application of motion information. However, there are few studies in this area so far. Aimed at fully exploring motion information to improve the superresolution of video, this paper proposes a superresolution reconstruction method based on an efficient subpixel convolutional neural network, where the optical flow is introduced in the deep learning network. Fusing the optical flow features between successive frames can compensate for information in frames and generate high-quality superresolution results. In addition, in order to improve the superresolution, a superpixel convolution layer is added after the deep convolution network. Finally, experimental evaluations demonstrate the satisfying performance of our method compared with previous methods and other deep learning networks; our method is more efficient.


2020 ◽  
Vol 10 (7) ◽  
pp. 2441 ◽  
Author(s):  
Jesus Bobadilla ◽  
Santiago Alonso ◽  
Antonio Hernando

This paper provides an innovative deep learning architecture to improve collaborative filtering results in recommender systems. It exploits the potential of the reliability concept to raise predictions and recommendations quality by incorporating prediction errors (reliabilities) in the deep learning layers. The underlying idea is to recommend highly predicted items that also have been found as reliable ones. We use the deep learning architecture to extract the existing non-linear relations between predictions, reliabilities, and accurate recommendations. The proposed architecture consists of three related stages, providing three stacked abstraction levels: (a) real prediction errors, (b) predicted errors (reliabilities), and (c) predicted ratings (predictions). In turn, each abstraction level requires a learning process: (a) Matrix Factorization from ratings, (b) Multilayer Neural Network fed with real prediction errors and hidden factors, and (c) Multilayer Neural Network fed with reliabilities and hidden factors. A complete set of experiments has been run involving three representative and open datasets and a state-of-the-art baseline. The results show strong prediction improvements and also important recommendation improvements, particularly for the recall quality measure.


Sign in / Sign up

Export Citation Format

Share Document