Preparation and characterization of high-rate and long-cycle LiFePO4/C nanocomposite as cathode material for lithium-ion battery

2010 ◽  
Vol 16 (1) ◽  
pp. 17-24 ◽  
Author(s):  
Xingchao Wang ◽  
Yudai Huang ◽  
Dianzeng Jia ◽  
Zaiping Guo ◽  
Duo Ni ◽  
...  
2020 ◽  
Vol 50 ◽  
pp. 143-153 ◽  
Author(s):  
Rui Zhang ◽  
Zhe Xue ◽  
Jiaqian Qin ◽  
Montree Sawangphruk ◽  
Xinyu Zhang ◽  
...  

2018 ◽  
Vol 783 ◽  
pp. 137-143
Author(s):  
Yong Tao Zhang ◽  
Xiao Li Hu

The lithium-ion battery is widely and increasingly used in many portable electronic devices and high-power systems in the modern society. Currently, it is significant to develop excellent cathode materials to meet stringent standards for batteries. In this paper, recent developments were reviewed for several typical cathode materials with high voltages and good capacities. These cathode materials referred to LiCoO2, LiNiO2, LiMn2O4, LiMPO4 (M=Fe, Mn, Co and Ni, et al), and their composites. The technical bottlenecks about the cathode material is required to be conquered. For instance, LiCoO2 and LiNiO2 have high coulombic capacity and good cycling characteristics, but are costly and exhibit poor thermal stability. Simultaneously, LiMn2O4 exhibit good thermal stability, high voltage and high rate capability, but have low capacity. Thus it is advantageous to produce a composite which shares the benefits of both materials. The composite cathode material is superior over any single electrode material because the former has more balanced performance, and therefore, is promising to manufacture the next generation of batteries.


2019 ◽  
Vol 7 (39) ◽  
pp. 22444-22452 ◽  
Author(s):  
Haijian Huang ◽  
Long Pan ◽  
Xi Chen ◽  
Elena Tervoort ◽  
Alla Sologubenko ◽  
...  

Combination of materials with fast Li-ion storage in both positive and negative electrodes results in a high-rate lithium ion battery full cell with a long life-span.


Nanoscale ◽  
2021 ◽  
Author(s):  
Cong Liu ◽  
Shuang Zhang ◽  
Yuanyuan Feng ◽  
Xiaowei Miao ◽  
Gang Yang ◽  
...  

In this work, Li1.12K0.05Mn0.57Ni0.24Nb0.02O2 (LMN-K/Nb) as a novel and high energy density cathode material is successfully synthesized and applied in lithium ion battery. Combining interlayer exchanging and elemental analysis, it...


2019 ◽  
Vol 7 (11) ◽  
pp. 6149-6160 ◽  
Author(s):  
Bin Wu ◽  
Yue Xie ◽  
Yaqin Meng ◽  
Cheng Qian ◽  
Yingying Chen ◽  
...  

Porous (Co, Mn)(Co, Mn)2O4-based microspheres (CM-11-Ms) and core–shell microspheres (CM-11-CSMs) were firstly synthesized via controlled pyrolysis of CoMn-precursor microspheres at different temperatures under nitrogen, exhibiting advanced lithium storage capacities.


Sign in / Sign up

Export Citation Format

Share Document