Highly mesoporous structure nickel cobalt oxides with an ultra-high specific surface area for supercapacitor electrode materials

2016 ◽  
Vol 20 (5) ◽  
pp. 1429-1434 ◽  
Author(s):  
Ni Wang ◽  
Mengqi Yao ◽  
Peng Zhao ◽  
Qian Zhang ◽  
Wencheng Hu
RSC Advances ◽  
2017 ◽  
Vol 7 (12) ◽  
pp. 6856-6864 ◽  
Author(s):  
Kien-Cuong Pham ◽  
David S. McPhail ◽  
Andrew T. S. Wee ◽  
Daniel H. C. Chua

Deposition of amorphous molybdenum sulfide on a high specific surface area carbon support strongly enhanced the specific capacitance of the material.


Author(s):  
Wenbo Geng ◽  
Qing Wang ◽  
Jianfeng Dai ◽  
Haoran Gao

The performance of supercapacitor electrode materials was greatly affected by the specific surface area. The urchin-like NiCo2O4 was transformed into porous NiCo2O4 (AA-NiCo2O[Formula: see text] using the acid–alkali treatment method. The specific surface area of AA-NiCo2O4 was 165.0660 m2/g, which was about three times larger than that of NiCo2O4. The specific capacitance of the AA-NiCo2O4 was enhanced significantly (1700 F/g at 1 A/g), and AA-NiCo2O4 possesses good rate capacitance (1277 F/g at 10 A/g). This is mainly attributed to the larger specific surface area, fast and convenient electron–ion transport and redox reaction. Therefore, AA-NiCo2O4 is a promising high-performance supercapacitor electrode material.


2018 ◽  
Vol 6 (30) ◽  
pp. 14644-14650 ◽  
Author(s):  
Shiyong Wang ◽  
Gang Wang ◽  
Tingting Wu ◽  
Yunqi Zhang ◽  
Fei Zhan ◽  
...  

BCN nanosheets show a pore structure with a high specific surface area and are investigated as CDI electrode materials for the first time.


2007 ◽  
Vol 336-338 ◽  
pp. 2286-2289
Author(s):  
Fei He ◽  
Xiao Dong He ◽  
Yao Li

Low-density xSiO2-(1-x)Al2O3 xerogels with x=0.9, 0.8, 0.7, 0.6 (mole fractions) were prepared by sol-gel and non-supercritical drying. Silica alkogels, which were the framework of binary composite materials, formed from tetraethyl orthosilicate (TEOS) by hydrolytic condensation with a molar ratio of TEOS: H2O: alcohol: hydrochloric acid: ammonia =1: 4: 10: 7.5×10-4: 0.0375. Aluminum hydroxide derived from Al(NO3)3·9H2O and NH4OH acting in the alcohol solution under the condition of catalyst. After filtrating and washing, the precipitation was mixed into silica sols to form SiO2-Al2O3 mixed oxide gels with different silicon and aluminum molar ratio. The structural change and crystallization of the binary xerogels were investigated after heat treatment at 600 for 2 h by the means of X-ray diffraction. Nitrogen adsorption experiment was performed to estimate specific surface area, porous volume and pore size distribution. The structural change of xerogels was observed by FT-IR spectroscopy. The resulting mixed xerogels possess of mesoporous structure which is characteristic of cylindrical pores, high specific surface area of 596-863 m2/g and a relatively narrow pore distribution of 2.8-30 nm. Al2O3 is introduced into the SiO2 phase and some of Al-O-Si bonds form.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Linrui Hou ◽  
Long Yang ◽  
Jiaoyang Li ◽  
Jie Tan ◽  
Changzhou Yuan

Sunlight-driven mesoporous BiVO4nanorods with monoclinic structure have been successfully synthesizedviaa simple hydrothermal method. The as-prepared one-dimensional BiVO4nanorods exhibited high specific surface area due to their unique mesoporous structure. The mesoporous BiVO4nanorods possessed strong photoabsorption properties in the visible light region as well as the ultravisible region, and the band gap was estimated to beca.2.18 eV. The photocatalytic activities were evaluated by decolorization of methylene blue under sunlight irradiation. Photocatalytic tests demonstrated that the decolorization rate of as-prepared mesoporous BiVO4nanorods was even up to 98.8% in 180 min, much better than that prepared by solid-state reaction (23.1%) and the commercial TiO2(Degussa P25) (14.2%) under the same conditions, due to their higher specific surface area and appropriate band gap. Moreover, the unique BiVO4nanorods exhibit high stability after five photocatalytic degradation recycles.


Sign in / Sign up

Export Citation Format

Share Document