scholarly journals Forces and flow induced by a moving intruder in a granular packing: coarse-graining and DEM simulations versus experiments

2020 ◽  
Vol 22 (4) ◽  
Author(s):  
Julien Lehuen ◽  
Jean-Yves Delenne ◽  
Agnès Duri ◽  
Thierry Ruiz
2015 ◽  
Vol 102 ◽  
pp. 1484-1490 ◽  
Author(s):  
Daniel Schiochet Nasato ◽  
Christoph Goniva ◽  
Stefan Pirker ◽  
Christoph Kloss

2020 ◽  
Vol 371 ◽  
pp. 83-95 ◽  
Author(s):  
Putri Mustika Widartiningsih ◽  
Yuki Mori ◽  
Kazuya Takabatake ◽  
Chuan-Yu Wu ◽  
Kensuke Yokoi ◽  
...  

2016 ◽  
Vol 293 ◽  
pp. 138-148 ◽  
Author(s):  
Thomas Weinhart ◽  
Carlos Labra ◽  
Stefan Luding ◽  
Jin Y. Ooi

Author(s):  
Jordan Musser ◽  
Ann S Almgren ◽  
William D Fullmer ◽  
Oscar Antepara ◽  
John B Bell ◽  
...  

MFIX-Exa is a computational fluid dynamics–discrete element model (CFD-DEM) code designed to run efficiently on current and next-generation supercomputing architectures. MFIX-Exa combines the CFD-DEM expertise embodied in the MFIX code—which was developed at NETL and is used widely in academia and industry—with the modern software framework, AMReX, developed at LBNL. The fundamental physics models follow those of the original MFIX, but the combination of new algorithmic approaches and a new software infrastructure will enable MFIX-Exa to leverage future exascale machines to optimize the modeling and design of multiphase chemical reactors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daiji Ichishima ◽  
Yuya Matsumura

AbstractLarge scale computation by molecular dynamics (MD) method is often challenging or even impractical due to its computational cost, in spite of its wide applications in a variety of fields. Although the recent advancement in parallel computing and introduction of coarse-graining methods have enabled large scale calculations, macroscopic analyses are still not realizable. Here, we present renormalized molecular dynamics (RMD), a renormalization group of MD in thermal equilibrium derived by using the Migdal–Kadanoff approximation. The RMD method improves the computational efficiency drastically while retaining the advantage of MD. The computational efficiency is improved by a factor of $$2^{n(D+1)}$$ 2 n ( D + 1 ) over conventional MD where D is the spatial dimension and n is the number of applied renormalization transforms. We verify RMD by conducting two simulations; melting of an aluminum slab and collision of aluminum spheres. Both problems show that the expectation values of physical quantities are in good agreement after the renormalization, whereas the consumption time is reduced as expected. To observe behavior of RMD near the critical point, the critical exponent of the Lennard-Jones potential is extracted by calculating specific heat on the mesoscale. The critical exponent is obtained as $$\nu =0.63\pm 0.01$$ ν = 0.63 ± 0.01 . In addition, the renormalization group of dissipative particle dynamics (DPD) is derived. Renormalized DPD is equivalent to RMD in isothermal systems under the condition such that Deborah number $$De\ll 1$$ D e ≪ 1 .


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4008
Author(s):  
Błażej Doroszuk ◽  
Robert Król ◽  
Jarosław Wajs

This paper addresses the problem of conveyor transfer station design in harsh operating conditions, aiming to identify and eliminate a failure phenomenon which interrupts aggregate supply. The analyzed transfer station is located in a Polish granite quarry. The study employs laser scanning and reverse engineering methods to map the existing transfer station and its geometry. Next, a discrete element method (DEM) model of granite aggregate has been created and used for simulating current operating conditions. The arch formation has been identified as the main reason for breakdowns. Alternative design solutions for transfer stations were tested in DEM simulations. The most uncomplicated design for manufacturing incorporated an impact plate, and a straight chute has been selected as the best solution. The study also involved identifying areas of the new station most exposed to wear phenomena. A new transfer point was implemented in the quarry and resolved the problem of blockages.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 659
Author(s):  
Jue Lu ◽  
Ze Wang

Entropy indicates irregularity or randomness of a dynamic system. Over the decades, entropy calculated at different scales of the system through subsampling or coarse graining has been used as a surrogate measure of system complexity. One popular multi-scale entropy analysis is the multi-scale sample entropy (MSE), which calculates entropy through the sample entropy (SampEn) formula at each time scale. SampEn is defined by the “logarithmic likelihood” that a small section (within a window of a length m) of the data “matches” with other sections will still “match” the others if the section window length increases by one. “Match” is defined by a threshold of r times standard deviation of the entire time series. A problem of current MSE algorithm is that SampEn calculations at different scales are based on the same matching threshold defined by the original time series but data standard deviation actually changes with the subsampling scales. Using a fixed threshold will automatically introduce systematic bias to the calculation results. The purpose of this paper is to mathematically present this systematic bias and to provide methods for correcting it. Our work will help the large MSE user community avoiding introducing the bias to their multi-scale SampEn calculation results.


Sign in / Sign up

Export Citation Format

Share Document