Effect of Global Postural Rehabilitation program on spatiotemporal gait parameters of parkinsonian patients: a three-dimensional motion analysis study

2012 ◽  
Vol 33 (6) ◽  
pp. 1337-1343 ◽  
Author(s):  
Carmine Vitale ◽  
Valeria Agosti ◽  
Dario Avella ◽  
Gabriella Santangelo ◽  
Marianna Amboni ◽  
...  
2015 ◽  
Vol 37 (4) ◽  
pp. 515-522 ◽  
Author(s):  
Valeria Agosti ◽  
Carmine Vitale ◽  
Dario Avella ◽  
Rosaria Rucco ◽  
Gabriella Santangelo ◽  
...  

2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Aoife Healy ◽  
Kimberley Linyard-Tough ◽  
Nachiappan Chockalingam

While previous research has assessed the validity of the OptoGait system to the GAITRite walkway and an instrumented treadmill, no research to date has assessed this system against a traditional three-dimensional motion analysis system. Additionally, previous research has shown that the OptoGait system shows systematic bias when compared to other systems due to the configuration of the system's hardware. This study examined the agreement between the spatiotemporal gait parameters calculated from the OptoGait system and a three-dimensional motion capture (14 camera Vicon motion capture system and 2 AMTI force plates) in healthy adults. Additionally, a range of filter settings for the OptoGait were examined to determine if it was possible to eliminate any systematic bias between the OptoGait and the three-dimensional motion analysis system. Agreement between the systems was examined using 95% limits of agreement by Bland and Altman and the intraclass correlation coefficient. A repeated measure ANOVA was used to detect any systematic differences between the systems. Findings confirm the validity of the OptoGait system for the evaluation of spatiotemporal gait parameters in healthy adults. Furthermore, recommendations on filter settings which eliminate the systematic bias between the OptoGait and the three-dimensional motion analysis system are provided.


Heliyon ◽  
2020 ◽  
Vol 6 (6) ◽  
pp. e04093
Author(s):  
Siti Hajjar Nasir ◽  
Hashmat Popat ◽  
Stephen Richmond

2016 ◽  
Vol 37 (4) ◽  
pp. 523-524 ◽  
Author(s):  
Valeria Agosti ◽  
Carmine Vitale ◽  
Dario Avella ◽  
Rosaria Rucco ◽  
Gabriella Santangelo ◽  
...  

2016 ◽  
Vol 50 (4) ◽  
pp. 185-189
Author(s):  
Jaspal Singh Sandhu ◽  
Amrinder Singh ◽  
Deepchand Nigam Arvind

ABSTRACT Purpose Recent sprint training regimens have used high-speed incline treadmill running to provide enhanced loading of muscles responsible for increasing forward running speed. The purpose of this study was to determine the standard alterations in the lower-limb joint kinematics and gait parameters resulting from changes in treadmill slope during the use of the treadmill as a medical reference. Subjects The subjects of this study were 20 normal, healthy elite football players without any orthopedic, respiratory, or cardiovascular system problems. Materials and methods The running gait of subjects was analyzed using motion analysis system on an inclined treadmill with three running trials, each for 3 minutes. The gait was measured at incline of 0, 9, and 18%. The speed of the treadmill was fixed at 4.0 m/s in order to maintain a constant running speed. Results The subjects’ gait parameters were observed to change significantly between slopes of 0 and 18%. The results showed greater maximum knee flexion, ankle dorsiflexion, and total hip range of motion (ROM) in incline treadmill running compared to level running. Conclusion The results of this study can be put in as a predesigned rehabilitation program for sprint training on a treadmill, especially for treadmills with adjustable gradients. How to cite this article Singh A, Arvind DN, Sandhu JS. A Comparison of an Integrated Three-dimensional Biomechanical Analysis of High-speed Incline and Level Treadmill running in Elite Football Players. J Postgrad Med Edu Res 2016;50(4):185-189.


Choonpa Igaku ◽  
2014 ◽  
Vol 41 (2) ◽  
pp. 155-163
Author(s):  
Yoshihiro SEO ◽  
Tomoko ISHIZU ◽  
Akiko ATSUMI ◽  
Ryo KAWAMURA ◽  
Kazutaka AONUMA

Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1242
Author(s):  
Georg Haider ◽  
Ursula Schulz ◽  
Nikola Katic ◽  
Christian Peham ◽  
Gilles Dupré

Single-port access systems (SPASs) are currently used in human and veterinary surgeries. However, they pose technical challenges, such as instrument crowding, intra- and extracorporeal instrument collision, and reduced maneuverability. Studies comparing the maneuverability of the scopes and instruments in different SPASs are lacking. This study aimed to compare the maneuverability of three different SPASs: the Covidien SILS-port, Storz Endocone, and glove port. A clear acrylic box with artificial skin placed at the bottom was used to mimic the abdominal wall and cavity. The three SPASs were placed from below, and a 10-mm endoscope and 5-mm instrument were introduced. A motion analysis system consisting of 18 cameras and motion analysis software were used to track the movement of the endoscope and instrument, to determine the volume of the cone-shaped, three-dimensional figures over which movement was possible, with higher values indicating greater maneuverability. The Mann–Whitney U test was used for the analysis. The maneuverability of the endoscope alone was significantly higher in the glove port system than in the other two SPASs. When inserting an additional instrument, the maneuverability significantly decreased in the SILS-port and Endocone, but not in the glove port. The highest maneuverability overall was found in the glove port.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Phob Ganokroj ◽  
Nuchanun Sompornpanich ◽  
Pichitpol Kerdsomnuek ◽  
Bavornrat Vanadurongwan ◽  
Pisit Lertwanich

Abstract Background Measurement of hip rotation is a crucial clinical parameter for the identification of hip problems and the monitoring of symptoms. The objective of this study was to determine whether the use of two smartphone applications is valid and reliable for the measurement of hip rotation. Methods An experimental, cross-sectional study was undertaken to assess passive hip internal and external rotation in three positions by two examiners. The hip rotational angles were measured by a smartphone clinometer application in the sitting and prone positions, and by a smartphone compass application in the supine position; their results were compared with those of the standard, three-dimensional, motion analysis system. The validities and inter-rater and intra-rater reliabilities of the smartphone applications were evaluated. Results The study involved 24 participants. The validities were good to excellent for the internal rotation angles in all positions (ICC 0.81–0.94), good for the external rotation angles in the prone position (ICC 0.79), and fair for the sitting and supine positions (ICC 0.70–0.73). The measurement of the hip internal rotation in the supine position had the highest ICC value of 0.94 (0.91, 0.96). The two smartphone applications showed good-to-excellent intra-rater reliability, but good-to-excellent inter-rater reliability for only three of the six positions (two other positions had fair reliability, while one position demonstrated poor reliability). Conclusions The two smartphone applications have good-to-excellent validity and intra-rater reliability, but only fair-to-good inter-rater reliability for the measurement of the hip rotational angle. The most valid hip rotational position in this study was the supine IR angle measurement, while the lowest validity was the ER angle measurement in the sitting position. The smartphone application is one of the practical measurements in hip rotational angles. Trial registration Number 20181022003 at the Thai Clinical Trials Registry (http://www.clinicaltrials.in.th) which was retrospectively registered at 2018-10-18 15:30:29.


Sign in / Sign up

Export Citation Format

Share Document