Validation of the MicroScan-96 for the species identification and methicillin susceptibility testing of clinical significant coagulase-negative staphylococci

2011 ◽  
Vol 31 (5) ◽  
pp. 747-751 ◽  
Author(s):  
L. Patteet ◽  
H. Goossens ◽  
M. Ieven
2007 ◽  
Vol 30 (9) ◽  
pp. 778-785 ◽  
Author(s):  
C. Von Eiff ◽  
K. Becker

Staphylococci have various strategies for resisting therapy that extend beyond classic mechanisms. Clinical experience with device-associated infections as well as with infections due to small-colony variants (SCVs) clearly shows that both antibacterial chemotherapy and host defense mechanisms are often unable to eliminate the pathogens and cure these infections. Of particular interest is the fact that in the past few years an increasing number of various foreign body-related infections due to staphylococcal SCVs have been reported. In this overview, the characteristics of SCVs recovered from clinical specimens and of defined mutants displaying the SCV phenotype are described. Their slow growth and changing biochemical and physiological features represent a challenge to clinical laboratory personnel, because recovery, identification, as well as susceptibility testing of these variants need particular efforts. In addition, the reduced susceptibility to aminoglycosides and the ability of SCVs to persist intracellularly require specific attention for the treatment of these infections. Thus, special efforts to search for these variants formed by Staphylococcus aureus or by coagulase-negative staphylococci should be considered when an infection is particularly resistant to therapy, persists for a long period or fails to respond to apparently adequate therapy with antimicrobial compounds.


2010 ◽  
Vol 54 (11) ◽  
pp. 4684-4693 ◽  
Author(s):  
George G. Zhanel ◽  
Melanie DeCorby ◽  
Heather Adam ◽  
Michael R. Mulvey ◽  
Melissa McCracken ◽  
...  

ABSTRACT A total of 5,282 bacterial isolates obtained between 1 January and 31 December 31 2008, inclusive, from patients in 10 hospitals across Canada as part of the Canadian Ward Surveillance Study (CANWARD 2008) underwent susceptibility testing. The 10 most common organisms, representing 78.8% of all clinical specimens, were as follows: Escherichia coli (21.4%), methicillin-susceptible Staphylococcus aureus (MSSA; 13.9%), Streptococcus pneumoniae (10.3%), Pseudomonas aeruginosa (7.1%), Klebsiella pneumoniae (6.0%), coagulase-negative staphylococci/Staphylococcus epidermidis (5.4%), methicillin-resistant S. aureus (MRSA; 5.1%), Haemophilus influenzae (4.1%), Enterococcus spp. (3.3%), Enterobacter cloacae (2.2%). MRSA comprised 27.0% (272/1,007) of all S. aureus isolates (genotypically, 68.8% of MRSA were health care associated [HA-MRSA] and 27.6% were community associated [CA-MRSA]). Extended-spectrum β-lactamase (ESBL)-producing E. coli occurred in 4.9% of E. coli isolates. The CTX-M type was the predominant ESBL, with CTX-M-15 the most prevalent genotype. MRSA demonstrated no resistance to ceftobiprole, daptomycin, linezolid, telavancin, tigecycline, or vancomycin (0.4% intermediate intermediate resistance). E. coli demonstrated no resistance to ertapenem, meropenem, or tigecycline. Resistance rates with P. aeruginosa were as follows: colistin (polymyxin E), 0.8%; amikacin, 3.5%; cefepime, 7.2%; gentamicin, 12.3%; fluoroquinolones, 19.0 to 24.1%; meropenem, 5.6%; piperacillin-tazobactam, 8.0%. A multidrug-resistant (MDR) phenotype occurred frequently in P. aeruginosa (5.9%) but uncommonly in E. coli (1.2%) and K. pneumoniae (0.9%). In conclusion, E. coli, S. aureus (MSSA and MRSA), P. aeruginosa, S. pneumoniae, K. pneumoniae, H. influenzae, and Enterococcus spp. are the most common isolates recovered from clinical specimens in Canadian hospitals. The prevalence of MRSA was 27.0% (of which genotypically 27.6% were CA-MRSA), while ESBL-producing E. coli occurred in 4.9% of isolates. An MDR phenotype was common in P. aeruginosa.


1998 ◽  
Vol 36 (6) ◽  
pp. 1781-1783 ◽  
Author(s):  
Günter Klein ◽  
Edith Zill ◽  
Ralf Schindler ◽  
Jacobus Louwers

A case of Lactobacillus rhamnosus-associated peritonitis in a patient undergoing continuous ambulatory peritoneal dialysis is reported. The patient was treated with vancomycin after isolation of glycopeptide-susceptible coagulase-negative staphylococci. After a skin rash developed, vancomycin was discontinued and replaced with teicoplanin. Seven weeks after the glycopeptide therapy was discontinued, a Lactobacillus strain was isolated in pure cultures. The isolate was identified first incorrectly as L. acidophilus but later correctly as L. rhamnosus. Antibiotic susceptibility testing showed that the isolate was resistant to glycopeptides but susceptible to several other antibiotics. The antibiotic treatment was then switched to imipenem and was successful.


2019 ◽  
Vol 57 (12) ◽  
Author(s):  
C. Paul Morris ◽  
Patricia J. Simner

ABSTRACT Accurate detection of methicillin resistance among staphylococci is vital for patient care. Methicillin resistance is most commonly mediated by acquisition of the mecA gene, which encodes an altered penicillin binding protein, PBP2a. Application of phenotypic methods to detect mecA-mediated beta-lactam resistance in staphylococci is becoming more complex as species-specific differences are identified among coagulase-negative staphylococci (CoNS). Previously, interpretative criteria and antimicrobial susceptibility testing (AST) methods specific to the CoNS group were used to evaluate Staphylococcus epidermidis. A manuscript by S. N. Naccache, K. Callan, C.-A. D. Burnham, M. A. Wallace, et al. (J Clin Microbiol 57:e00961-19, 2019, https://doi.org/10.1128/JCM.00961-19) details experiments revealing that S. epidermidis, the most common clinically isolated CoNS, requires tailored use of previously described methods and interpretive criteria to reliably identify the presence of mecA-mediated methicillin resistance.


Sign in / Sign up

Export Citation Format

Share Document