Elevation change and the vulnerability of Rhode Island (USA) salt marshes to sea-level rise

2016 ◽  
Vol 17 (2) ◽  
pp. 389-397 ◽  
Author(s):  
Kenneth B. Raposa ◽  
Marci L. Cole Ekberg ◽  
David M. Burdick ◽  
Nicholas T. Ernst ◽  
Susan C. Adamowicz
2015 ◽  
Vol 40 (3) ◽  
pp. 640-650 ◽  
Author(s):  
Kenneth B. Raposa ◽  
Robin L. J. Weber ◽  
Marci Cole Ekberg ◽  
Wenley Ferguson

2021 ◽  
Author(s):  
A. Rita Carrasco ◽  
Katerina Kombiadou ◽  
Miguel Amado

<p>It is predictable that salt marshes in regions, where sediment loads are high, should be stable against a broader range of relative sea level scenarios than those in sediment-poor systems. Despite extensive theoretical and laboratory studies, additional syntheses of marsh ‘persistence’ indicators under human interventions and accelerated sea-level rise rates are still needed. This study investigates the recent lateral changes occurring in lagoon-type marshes of the Ria Formosa lagoon (south Portugal) in the presence of human interventions and sea-level rise, to identify the major drivers for past marsh evolution and to estimate potential future trends. The conducted analysis assessed the past geomorphological adjustment based on imagery analysis and assessed its potential future adjustment to sea-level rise (~100 years) based on modelled land cover changes (by employing the SLAMM model within two sea-level rise scenarios).</p><p>Salt marshes in the Ria Formosa showed slow lateral growth rates over the last 70 years (<1 mm∙yr<sup>-1</sup>), with localized erosion along the main navigable channels associated with dredging activities. Higher change rates were noted near the inlets, with stronger progradation near the natural inlets of the system, fed by sediment influx pulses. Any potential influence of sea-level increase to an intensification of marsh-edge erosion in the past, could not be distinguished from human-induced pressures in the area. No significant sediment was exchanged between the salt marshes and tidal flats, and no self-organization pattern between them was observed in past. The related analysis showed that landcover changes in the salt marsh areas are likely to be more prominent in the future. The obtained results showed evidence of non-linearity in marsh response to high sea-level rise rates, which could indicate to the presence of critical thresholds and potential negative feedbacks within the system, with significant implications to marsh resilience.</p>


The Condor ◽  
2019 ◽  
Vol 121 (2) ◽  
Author(s):  
Samuel G Roberts ◽  
Rebecca A Longenecker ◽  
Matthew A Etterson ◽  
Chris S Elphick ◽  
Brian J Olsen ◽  
...  

Abstract Globally limited to 45,000 km2, salt marshes and their endemic species are threatened by numerous anthropogenic influences, including sea-level rise and predator pressure on survival and nesting success. Along the Atlantic coast of North America, Seaside (Ammospiza maritima) and Saltmarsh (A. caudacuta) sparrows are endemic to salt marshes, with Saltmarsh Sparrows declining by 9% annually. Because vital rates and factors affecting population persistence vary for both species, local estimates are necessary to best predict population persistence in response to management actions. We used a metapopulation model to estimate the population viability of the breeding Seaside and Saltmarsh sparrow populations in coastal New Jersey over a 42-yr period. We incorporated empirical data on the vital rates and abundances of these populations and simulated the effect of low (0.35 m) and high (0.75 m) levels of sea-level rise. We found that the Seaside Sparrow population persisted under both sea-level rise scenarios; however, the Saltmarsh Sparrow population reached a quasi-extinction threshold within 20 yr. Using the same framework, we modeled potential management scenarios that could increase the persistence probability of Saltmarsh Sparrows and found that fecundity and juvenile survival rates will require at least a 15% concurrent increase for the local population to persist beyond 2050. Future field research should evaluate the feasibility and effectiveness of management actions, such as predator control, for increasing Saltmarsh Sparrow vital rates in order to maintain the species in coastal New Jersey.


2020 ◽  
Vol 8 (4) ◽  
pp. 295
Author(s):  
Malcolm L. Spaulding ◽  
Annette Grilli ◽  
Chris Damon ◽  
Teresa Crean ◽  
Grover Fugate

STORMTOOLS coastal environmental risk index (CERI) was applied to communities located along the southern coast of Rhode Island (RI) to determine the risk to structures located in the flood plain. CERI uses estimates of the base flood elevation (BFE), explicitly including the effects of sea level rise (SLR); details on the structure types, from the E911 emergency data base/parcel data, and associated first floor elevation (FFE); and damage curves from the US Army Corp of Engineers North Atlantic Coast Comprehensive Study (NACCS) to determine the damages to structures for the study area. Surge levels and associated offshore waves used to determine BFEs were obtained from the NACCS hydrodynamic and wave model predictions. The impacts of sea level rise and coastal erosion on flooding were modeled using XBeach and STWAVE and validated by observations at selected locations along the coastline. CERI estimated the structural damage to each structure in the coastal flood plain for 100 yr flooding with SLR ranging from 0 to 10 ft. The number of structures at risk was estimated to increase approximate linearly from 3700 for no SLR to about 8000 for 10 ft SLR, with about equal percentages for each of the four coastal communities (Narragansett, South Kingstown, Charlestown, and Westerly, Rhode Island (RI)). The majority of the structures in the flood plain are single/story residences without (41%) and with (46%) basements (total 87%; structures with basements are the most vulnerable). Less vulnerable are structures elevated on piles with 8.8% of the total. The remaining are commercial structures principally located either in the Port of Galilee and or Watch Hill. The analysis showed that about 20% of the structures in the 100 yr flood plain are estimated to be damaged at 50% or greater. This increases to 55% of structures as SLR rises to 5 ft. At higher SLR values the percent damaged at 50% or greater slowly declines to 45% at 10 ft SLR. This behavior is a result of the number of homes below MSL increasing dramatically as SLR values moves higher than 5 ft and thus being removed from the structures damaged pool. Generalized CERI risk maps have developed to allow the managers to determine the broad risk of siting structures at any location in their communities. CERI has recently become available as a mobile phone App, facilitating the ability of state and local decision makers and the public to determine the risk of locating a selected building type at any location in their communities.


2020 ◽  
Vol 718 ◽  
pp. 137181 ◽  
Author(s):  
Wei Wu ◽  
Patrick Biber ◽  
Deepak R. Mishra ◽  
Shuvankar Ghosh

Plants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 594
Author(s):  
Blanca Gallego-Tévar ◽  
Brenda J. Grewell ◽  
Rebecca E. Drenovsky ◽  
Jesús M. Castillo

Hybridization might promote offspring fitness via a greater tolerance to environmental stressors due to heterosis and higher levels of phenotypic plasticity. Thus, analyzing the phenotypic expression of hybrids provides an opportunity to elucidate further plant responses to environmental stress. In the case of coastal salt marshes, sea level rise subjects hybrids, and their parents, to longer tidal submergence and higher salinity. We analyzed the phenotypic expression patterns in the hybrid Spartina densiflora x foliosa relative to its parental species, native S. foliosa, and invasive S. densiflora, from the San Francisco Estuary when exposed to contrasting salinities and inundations in a mesocosm experiment. 37% of the recorded traits displayed no variability among parents and hybrids, 3% showed an additive inheritance, 37% showed mid-parent heterosis, 18% showed best-parent heterosis, and 5% presented worst-parent heterosis. Transgressivity, rather than phenotypic plasticity, in key functional traits of the hybrid, such as tiller height, conveyed greater stress tolerance to the hybrid when compared to the tolerance of its parents. As parental trait variability increased, phenotypic transgressivity of the hybrid increased and it was more important in response to inundation than salinity. Increases in salinity and inundation associated with sea level rise will amplify the superiority of the hybrid over its parental species. These results provide evidence of transgressive traits as an underlying source of adaptive variation that can facilitate plant invasions. The adaptive evolutionary process of hybridization is thought to support an increased invasiveness of plant species and their rapid evolution.


Sign in / Sign up

Export Citation Format

Share Document