scholarly journals Effect of water content on the size and membrane thickness of polystyrene-block-poly(ethylene oxide) vesicles

2015 ◽  
Vol 33 (4) ◽  
pp. 661-668 ◽  
Author(s):  
Chun-yan Wang ◽  
Qian Yuan ◽  
Shu-guang Yang ◽  
Jian Xu
Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2013 ◽  
Author(s):  
Martin Fauquignon ◽  
Emmanuel Ibarboure ◽  
Stéphane Carlotti ◽  
Annie Brûlet ◽  
Marc Schmutz ◽  
...  

In the emerging field of hybrid polymer/lipid vesicles, relatively few copolymers have been evaluated regarding their ability to form these structures and the resulting membrane properties have been scarcely studied. Here, we present the synthesis and self-assembly in solution of poly(dimethylsiloxane)-block-poly(ethylene oxide) diblock copolymers (PDMS-b-PEO). A library of different PDMS-b-PEO diblock copolymers was synthesized using ring-opening polymerization of hexamethylcyclotrisiloxane (D3) and further coupling with PEO chains via click chemistry. Self-assembly of the copolymers in water was studied using Dynamic Light Scattering (DLS), Static Light Scattering (SLS), Small Angle Neutron Scattering (SANS), and Cryo-Transmission Electron Microscopy (Cryo-TEM). Giant polymersomes obtained by electroformation present high toughness compared to those obtained from triblock copolymer in previous studies, for similar membrane thickness. Interestingly, these copolymers can be associated to phospholipids to form Giant Hybrid Unilamellar Vesicles (GHUV); preliminary investigations of their mechanical properties show that tough hybrid vesicles can be obtained.


Author(s):  
C. E. Cluthe ◽  
G. G. Cocks

Aqueous solutions of a 1 weight-per cent poly (ethylene oxide) (PEO) were degassed under vacuum, transferred to a parallel plate viscometer under a nitrogen gas blanket, and exposed to Co60 gamma radiation. The Co60 source was rated at 4000 curies, and the dose ratewas 3.8x105 rads/hr. The poly (ethylene oxide) employed in the irradiations had an initial viscosity average molecular weight of 2.1 x 106.The solutions were gelled by a free radical reaction with dosages ranging from 5x104 rads to 4.8x106 rads.


2003 ◽  
Vol 68 (10) ◽  
pp. 2019-2031 ◽  
Author(s):  
Markéta Zukalová ◽  
Jiří Rathouský ◽  
Arnošt Zukal

A new procedure has been developed, which is based on homogeneous precipitation of organized mesoporous silica from an aqueous solution of sodium metasilicate and a nonionic poly(ethylene oxide) surfactant serving as a structure-directing agent. The decrease in pH, which induces the polycondensation of silica, is achieved by hydrolysis of ethyl acetate. Owing to the complexation of Na+ cations by poly(ethylene oxide) segments, assembling of the mesostructure appears to occur under electrostatic control by the S0Na+I- pathway, where S0 and I- are surfactant and inorganic species, respectively. As the complexation of Na+ cations causes extended conformation of poly(ethylene oxide) segments, the pore size and pore volume of organized mesoporous silica increase in comparison with materials prepared under neutral or acidic conditions. The assembling of particles can be fully separated from their solidification, which results in the formation of highly regular spherical particles of mesoporous silica.


Sign in / Sign up

Export Citation Format

Share Document