S. Lucerna, F.M. Salpietro, C. Alafaci, F. Tomasello (eds): In vivo atlas of deep brain structures

2003 ◽  
Vol 26 (2) ◽  
pp. 140-140
Author(s):  
Dieter Voth
Keyword(s):  
Author(s):  
Sebastiano Lucerna ◽  
Francesco M. Salpietro ◽  
Concetta Alafaci ◽  
Francesco Tomasello
Keyword(s):  

2018 ◽  
Author(s):  
Scott F. Owen ◽  
Anatol C. Kreitzer

ABSTRACTBackgroundIntracranial photometry through chronically implanted optical fibers is a widely adopted technique for measuring signals from fluorescent probes in deep-brain structures. The recent proliferation of bright, photo-stable, and specific genetically-encoded fluorescent reporters for calcium and for other neuromodulators has greatly increased the utility and popularity of this technique.New MethodHere we describe an open-source, cost-effective, microcontroller-based solution for controlling optical components in an intracranial photometry system and processing the resulting signal.ResultsWe show proof-of-principle that this system supports high quality intracranial photometry recordings from dorsal striatum in freely moving mice. A single system supports simultaneous fluorescence measurements in two independent color channels, but multiple systems can be integrated together if additional fluorescence channels are required. This system is designed to work in combination with either commercially available or custom-built optical components. Parts can be purchased for less than one tenth the cost of commercially available alternatives and complete assembly takes less than one day for an inexperienced user.Comparison with Existing Method(s)Currently available hardware draws on a variety of commercial, custom-built, or hybrid elements for both optical and electronic components. Many of these hardware systems are either specialized and inflexible, or over-engineered and expensive.ConclusionsThis open-source system increases experimental flexibility while reducing cost relative to current commercially available components. All software and firmware are open-source and customizable, affording a degree of experimental flexibility that is not available in current commercial systems.


2020 ◽  
Vol 6 (40) ◽  
pp. eabc6521 ◽  
Author(s):  
Zhongya Qin ◽  
Congping Chen ◽  
Sicong He ◽  
Ye Wang ◽  
Kam Fai Tam ◽  
...  

Optical deep-brain imaging in vivo at high resolution has remained a great challenge over the decades. Two-photon endomicroscopy provides a minimally invasive approach to image buried brain structures, once it is integrated with a gradient refractive index (GRIN) lens embedded in the brain. However, its imaging resolution and field of view are compromised by the intrinsic aberrations of the GRIN lens. Here, we develop a two-photon endomicroscopy by adding adaptive optics based on direct wavefront sensing, which enables recovery of diffraction-limited resolution in deep-brain imaging. A new precompensation strategy plays a critical role to correct aberrations over large volumes and achieve rapid random-access multiplane imaging. We investigate the neuronal plasticity in the hippocampus, a critical deep brain structure, and reveal the relationship between the somatic and dendritic activity of pyramidal neurons.


2018 ◽  
Author(s):  
Sebastian A. Vasquez-Lopez ◽  
Vadim Koren ◽  
Martin Plöschner ◽  
Zahid Padamsey ◽  
Tomáš Čižmár ◽  
...  

AbstractAchieving optical access to deep-brain structures represents an important step towards the goal of understanding the mammalian central nervous system. The complex refractive index distribution within brain tissue introduces severe aberrations to long-distance light propagation thereby prohibiting image reconstruction using currently available non-invasive techniques. In an attempt to overcome this challenge endoscopic approaches have been adopted, principally in the form of fibre bundles or GRIN-lens based endoscopes. Unfortunately, these approaches create substantial mechanical lesions of the tissue precipitating neuropathological responses that include inflammation and gliosis. Together, lesions and the associated neuropathology may compromise neural circuit performance. By replacing Fourier-based image relay with a holographic approach, we have been able to reduce the volume of tissue lesion by more than 100-fold, while preserving diffraction-limited imaging performance. Here we demonstrate high-resolution fluorescence imaging of neuronal structures, dendrites and synaptic specialisations, in deep-brain regions of living mice. These results represent a major breakthrough in the compromise between high-resolution imaging and tissue damage, heralding new possibilities for deep-brain imaging in vivo.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Bálint Király ◽  
Diána Balázsfi ◽  
Ildikó Horváth ◽  
Nicola Solari ◽  
Katalin Sviatkó ◽  
...  

Abstract Electrophysiology provides a direct readout of neuronal activity at a temporal precision only limited by the sampling rate. However, interrogating deep brain structures, implanting multiple targets or aiming at unusual angles still poses significant challenges for operators, and errors are only discovered by post-hoc histological reconstruction. Here, we propose a method combining the high-resolution information about bone landmarks provided by micro-CT scanning with the soft tissue contrast of the MRI, which allowed us to precisely localize electrodes and optic fibers in mice in vivo. This enables arbitrating the success of implantation directly after surgery with a precision comparable to gold standard histology. Adjustment of the recording depth with micro-drives or early termination of unsuccessful experiments saves many working hours, and fast 3-dimensional feedback helps surgeons avoid systematic errors. Increased aiming precision enables more precise targeting of small or deep brain nuclei and multiple targeting of specific cortical or hippocampal layers.


Sign in / Sign up

Export Citation Format

Share Document