scholarly journals Overburden Failure Associated with Mining Coal Seams in Close Proximity in Ascending and Descending Sequences Under a Large Water Body

2017 ◽  
Vol 37 (2) ◽  
pp. 322-335 ◽  
Author(s):  
Dingyang Zhang ◽  
Wanghua Sui ◽  
Jiawei Liu
Author(s):  
Yang Li ◽  
Yuqi Ren ◽  
Syd S. Peng ◽  
Haozhou Chen ◽  
Nan Wang ◽  
...  

2018 ◽  
Vol 41 ◽  
pp. 01007
Author(s):  
Yuriy Kutepov ◽  
Aleksandr Mironov ◽  
Maksim Sablin ◽  
Elena Borger

This article considers mining and geological conditions of the site “Blagodatny” of the mine named after A.D. Ruban located underneaththe old open pit coal mine and the hydraulic-mine dump. The potentially dangerous zones in the undermined rock mass have been identified based onthe conditions of formation of water inflow into mine workings. Safe depthof coal seams mining has been calculated depending on the type of water body – the hydraulic-mine dump.


2020 ◽  
Vol 201 ◽  
pp. 01014
Author(s):  
Mykola Antoshchenko ◽  
Elvira Filatieva ◽  
Vladyslav Yefimtsev ◽  
Vadym Tarasov

Currently, there is no reliable regulatory framework for determining the hazardous properties of coal seams, including the propensity of coal for spontaneous combustion. Under relatively identical mining engineering and geological conditions for mining coal seams, the probability of emergency situations is determined to a large extent by the genetic properties of coal. The research methodology is based on the classical definition of metamorphism, which characterizes the change in the composition and properties of coal. The analysis involves indicators that directly or indirectly characterize the elemental composition of organic and mineral mass, chemical activity and physico-mechanical properties. This will allow to establish a specific composition and properties that contribute to the manifestation of certain hazardous properties of coal seams during mining operations. It is shown that the modern industrial classification does not take into account the change in the organic and mineral constituents of coal, which does not make it possible to use it unchanged to predict the hazardous properties of coal seams.


2019 ◽  
Vol 105 ◽  
pp. 01009
Author(s):  
Sergey Kubrin ◽  
Konstantin Kopylov

Comparison of normative and actual indicators on mining testifies to inefficient work of the excavating equipment. The results of the correlation analysis of the speed of movement of the harvester relative to the section of the support with the readings of methane sensors revealed a significant dependence. When conducting mining operations in complex geological conditions at great depths, a joint step-by-step carrying out of various technological processes is required to ensure the preparation, opening and excavation of reserves and the creation of safe conditions for mining coal seams. At the same time, efforts should be made to minimize time, human and energy resources. In this regard, of particular importance is the right choice of the program of operational management of technological processes of mining, monitoring the implementation of technological operations for the timely detection of deviations from the selected mode, adjustment of the established current modes of operation of technological processes and the development, if necessary, measures aimed at reducing the risks of accidents. A promising direction of solving this problem is the use of modeling methods. The developed models of technological processes of the mining enterprise will allow planning production and supporting decision-making in the implementation of operational management.


1988 ◽  
Vol 44 (1-2) ◽  
pp. 171-180 ◽  
Author(s):  
Y. Sadhuram ◽  
P. Vethamony ◽  
A. Suryanarayana ◽  
G. N. Swamy ◽  
J. S. Sastry

1968 ◽  
Vol 4 (5) ◽  
pp. 550-552
Author(s):  
P. É. Mal'bert ◽  
N. S. Lavrov ◽  
Yu. I. Alkasarov
Keyword(s):  

2018 ◽  
Vol 55 (10) ◽  
pp. 1433-1450 ◽  
Author(s):  
Zhen-lei Li ◽  
Xue-qiu He ◽  
Lin-ming Dou ◽  
Da-zhao Song

In recent years, rockbursts have occurred frequently during the mining of thick coal seams in China. Use of the top-coal caving or slicing mining method to extract these thick seams may result in distinct geomechanical responses in the strata and, in turn, the pattern of rockburst occurrence around longwall layouts. To establish a thorough understanding of which method (caving or slicing) is better when it comes to preventing rockbursts during the extraction process, a suite of in situ rockburst measurements was conducted. Six typical rockburst-prone collieries were monitored during which a total of 110 rockburst events occurred. Numerical modelling was used to help interpret the observations. Here, we focus on the analysis of these field observations and the numerical simulations employed to develop a conceptual model for rockburst occurrence during caving mining of thick coal seams. We find that caving mining has a certain rockburst-reducing effect in that the method significantly decreases, or even avoids, the occurrence of rockbursts at coalfaces. Moreover, it reduces the scope of the damage likely to be incurred and the severity and frequency of rockbursting. According to the conceptual model, the rockburst-prone area during caving mining is generally the roadway section located a certain distance ahead of the coalface. This distance, which is roughly 10–54 m, is consistent with the rockburst damage observed on site (mostly 10–50 m ahead of the coalface). This rockburst pattern arises because caving mining results in reduced stress concentration, less bottom coal being retained, and wider-ranging fracture zones around the mine openings, especially ahead of the coalface. This makes the rock surrounding the mine openings less likely to accumulate high levels of elastic energy that need releasing and hence it is more difficult to induce rockbursting. Therefore, it is recommended that the top-coal caving method should be the preferred method of extraction when mining coal seams of a certain thickness.


2014 ◽  
Vol 889-890 ◽  
pp. 1362-1374 ◽  
Author(s):  
Yong Zhang ◽  
Chun Lei Zhang ◽  
Chun Chen Wei ◽  
Ya Dong Liu ◽  
Shi Qing Zhang ◽  
...  

In order to make sure the reasonable roadway layout in lower seam of close coal mining group coordination in Lijiahao coal mine, firstly, applying the theoretical analysis and geological radar detection to get the influence depth of mining from the up coal seam 2-2 to the floor is about 20m, the results show that the thickness of complete strata is about 15m, then determining to use the outward alternate entries in lower seam roadway by using theoretical analysis. At last, determining the distance of outward alternate entries is 12-14m by using FLAC3D numerical simulation software to simulate the change of stress and displacement in roof floor and two sides of roadway.


Sign in / Sign up

Export Citation Format

Share Document