Mechanisms of along-channel sediment transport in the North Passage of the Yangtze Estuary and their response to large-scale interventions

2013 ◽  
Vol 63 (2-3) ◽  
pp. 283-305 ◽  
Author(s):  
Chenjuan Jiang ◽  
Huib E. de Swart ◽  
Jiufa Li ◽  
Gaofeng Liu
Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1435
Author(s):  
Peng Hu ◽  
Junyu Tao ◽  
Aofei Ji ◽  
Wei Li ◽  
Zhiguo He

In this paper, a computationally efficient shallow water model is developed for sediment transport in the Yangtze estuary by considering mixed cohesive and non-cohesive sediment transport. It is firstly shown that the model is capable of reproducing tidal-hydrodynamics in the estuarine region. Secondly, it is demonstrated that the observed temporal variation of suspended sediment concentration (SSC) for mixed cohesive and non-cohesive sediments can be well-captured by the model with calibrated parameters (i.e., critical shear stresses for erosion/deposition, erosion coefficient). Numerical comparative studies indicate that: (1) consideration of multiple sediment fraction (both cohesive and non-cohesive sediments) is important for accurate modeling of SSC in the Yangtze Estuary; (2) the critical shear stress and the erosion coefficient is shown to be site-dependent, for which intensive calibration may be required; and (3) the Deepwater Navigation Channel (DNC) project may lead to enhanced current velocity and thus reduced sediment deposition in the North Passage of the Yangtze Estuary. Finally, the implementation of the hybrid local time step/global maximum time step (LTS/GMaTS) (using LTS to update the hydro-sediment module but using GMaTS to update the morphodynamic module) can lead to a reduction of as high as 90% in the computational cost for the Yangtze Estuary. This advantage, along with its well-demonstrated quantitative accuracy, indicates that the present model should find wide applications in estuarine regions.


2019 ◽  
Vol 7 (11) ◽  
pp. 390 ◽  
Author(s):  
Dechao Hu ◽  
Min Wang ◽  
Shiming Yao ◽  
Zhongwu Jin

Because of special morphologies and complex runoff–tide interactions, the landward floodtide flows in Yangtze Estuary are observed to spill over from the North to the South Branches, carrying a lot of sediment. To quantitatively clarify the spillover problem, a two-dimensional numerical model using a high-resolution channel-refined unstructured grid is developed for the entire Yangtze Estuary from Datong to river mouths (620 km) and part of the East Sea. The developed model ensures a good description of the river-coast-ocean coupling, the irregular boundaries, and local river regimes in the Yangtze Estuary. In tests, the simulated histories of the tidal level, depth-averaged velocity, and sediment concentration agree well with field data. The spillover of sediment in the Yangtze Estuary is studied using the condition of a spring and a neap tide in dry seasons. For a representative cross-section in the upper reach of the North Branch (QLG), the difference of the cross-sectional sediment flux (CSSF) between floodtide and ebbtide durations is 43.85–11.26 × 104 t/day, accounting for 37.5–34.9% of the landward floodtide CSSF. The mechanics of sediment spillover in Yangtze Estuary are clarified in terms of a successive process comprising the source, transport, and drainage of the spillover sediment.


2017 ◽  
Vol 196 ◽  
pp. 399-410 ◽  
Author(s):  
Yuyang Shao ◽  
Xiaoteng Shen ◽  
Jerome P.-Y. Maa ◽  
Jian Shen

2012 ◽  
Vol 1 (33) ◽  
pp. 69
Author(s):  
Zheng Bing Wang ◽  
Pingxing Ding

The channels in the Yangtze Estuary have an ordered-branching structure: The estuary is first divided by the Chongming Island into the North Branch and the South Branch. Then the South Branch is divided into the North Channel and South Channel by the Islands Changxing and Hengsha. The South Channel is again divided into the North and South Passage by the Jiuduansha Shoal. This three-level bifurcation and four-outlet configuration appears to be a natural character of the estuary, also in the past (Chen et al., 1982), although the whole system has been extending into the East China Sea in the southeast direction due to the abundant sediment supply from the Yangtze River. Recently, the natural development of the system seems to be substantially disturbed by human interferences, especially the Deep Navigation Channel Project. For the understanding of the behaviour of the bifurcating channel system in the estuary we present analysis on two aspects: (1) the equilibrium configuration of river delta distributary networks, and (2) influence of tidal flow on the morphological equilibrium of rivers. Based on the analyses we conclude that the branching channel structure of the Yangtze Estuary can be classified as tide-influenced river delta distributary networks. Its basic structure is the same as in case of river dominated delta. The empirical relations describing the basic features of the river-dominated distributary delta networks can be explained by theoretical analysis, although they are not fully satisfied by the Yangtze Estuary because of the influence of the tide. Two major influences of the tide are identified, viz. increasing the resistance to the river flow into the sea and increasing the sediment transport capacity. As consequence of these two influences the cross-sectional area of the river/estuary increases in the seawards direction and the bed slope decreases. The insights from the analyses are helpful for the understanding of the impact of the Deep Navigation Channel Project on the large scale morphological development of the estuary.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yibang Wang ◽  
Cui Liang ◽  
Zhaomin Chen ◽  
Shude Liu ◽  
Hui Zhang ◽  
...  

Estuaries, where fresh and salty water converge, provide abundant nutrients for ichthyoplankton. Ichthyoplankton, including fish eggs, larvae, and juveniles, are important fishery recruitment resources. The Yangtze Estuary and its adjacent waters comprise a typical large-scale estuary and supply many important fish spawning, feeding, and breeding areas. In this study, 1,291 ichthyoplankton individuals were collected in the Yangtze Estuary in spring, from 2013 to 2020. The aims of the study were to provide detailed information on characteristics of the ichthyoplankton assemblage, explore interannual variation, and evaluate the effects of environmental variables on the temporal variation in assemblage structure. Twenty-six species in seventeen families were identified. The dominant species were Coilia mystus, Chelidonichthys spinosus, Engraulis japonicus, Hypoatherina valenciennei, Larimichthys polyactis, Salanx ariakensis, Stolephorus commersonnii, and Trachidermus fasciatus. The ichthyoplankton assemblage changed significantly over time, and Chelidonichthys spinosus became one of the dominant species. Canonical correspondence analysis showed that temperature and chlorophyll a were the key factors affecting the assemblage structure in the Yangtze Estuary in spring.


2020 ◽  
Vol 8 (11) ◽  
pp. 892
Author(s):  
Laura Brakenhoff ◽  
Reinier Schrijvershof ◽  
Jebbe van der Werf ◽  
Bart Grasmeijer ◽  
Gerben Ruessink ◽  
...  

Bedform-related roughness affects both water movement and sediment transport, so it is important that it is represented correctly in numerical morphodynamic models. The main objective of the present study is to quantify for the first time the importance of ripple- and megaripple-related roughness for modelled hydrodynamics and sediment transport on the wave- and tide-dominated Ameland ebb-tidal delta in the north of the Netherlands. To do so, a sensitivity analysis was performed, in which several types of bedform-related roughness predictors were evaluated using a Delft3D model. Also, modelled ripple roughness was compared to data of ripple heights observed in a six-week field campaign on the Ameland ebb-tidal delta. The present study improves our understanding of how choices in model set-up influence model results. By comparing the results of the model scenarios, it was found that the ripple and megaripple-related roughness affect the depth-averaged current velocity, mainly over the shallow areas of the delta. The small-scale ripples are also important for the suspended load sediment transport, both indirectly through the affected flow and directly. While the current magnitude changes by 10–20% through changes in bedform roughness, the sediment transport magnitude changes by more than 100%.


Sign in / Sign up

Export Citation Format

Share Document