scholarly journals Migration and differentiation of osteoclast precursors under gradient fluid shear stress

2019 ◽  
Vol 18 (6) ◽  
pp. 1731-1744 ◽  
Author(s):  
Yan Gao ◽  
Taiyang Li ◽  
Qing Sun ◽  
Chongyang Ye ◽  
Mengmeng Guo ◽  
...  
2019 ◽  
Vol 13 (1) ◽  
pp. 183-191 ◽  
Author(s):  
Yan Gao ◽  
Taiyang Li ◽  
Qing Sun ◽  
Bo Huo

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiao Zhang ◽  
Yan Gao ◽  
Bo Huo

Fluid shear stress (FSS) plays a crucial role for cell migration within bone cavities filled with interstitial fluid. Whether the local wall FSS distribution on cell surface depends on the global gradient FSS of flow field should be clarified to explain our previous experimental observation. In this study, finite element models of discretely distributed or hexagonal closely packed cells adherent on the bottom plate in a modified plate flow chamber with different global FSS gradient were constructed. Fluid-solid coupling simulation of wall fluid shear stress on cells was performed, and two types of data analysis methods were used. The results showed that the profile of local FSS distribution on cell surface coincides with the angle of cell migration determined in the previous study, suggesting that RAW264.7 osteoclast precursors may sense the global FSS gradient and migrate toward the low-FSS region under a high gradient. For hexagonal closely packed cells, this profile on the surface of central cells decreased along with the increase of cell spacing, which may be caused by the higher local FSS difference along the direction of FSS gradient in the regions close to the bottom plate. This study may explain the phenomenon of the targeted migration of osteoclast precursors under gradient FSS field and further provide insights into the mechanism of mechanical stimulation-induced bone remodeling.


2018 ◽  
Author(s):  
Y Gao ◽  
T. Y Li ◽  
Q. Sun ◽  
C. Y Ye ◽  
M. M. Guo ◽  
...  

AbstractThe skeleton is able to adapt to mechanical loading through bone remodeling, i.e. bone resorption followed by bone formation. The osteoclasts close to microdamages are believed to initiate bone resorption, but whether local mechanical loading such as fluid flow regulates recruitment and differentiation of osteoclast precursors at the site of bone resorption has yet to be investigated. In the present study, finite element analysis first revealed that there exists low fluid shear stress (FSS) field inside microdamage. Basing on a custom-made device of cone-and-plate fluid chamber, finite element analysis and particle image velocimetry measurement were performed to verify the formation of gradient FSS flow field. Furthermore, the effects of gradient FSS on the migration, aggregation, and fusion of osteoclast precursors were observed. Results showed that osteoclast precursor RAW264.7 cells migrate along radial direction toward the region with lower FSS during exposure to gradient FSS stimulation for 40 min, obviously deviating from the direction of actual fluid flow indicated by fluorescent particles. When inhibiting calcium signaling pathway with gadolinium and thapsigargin, cell migration toward low-FSS region was significantly reduced. For other cell lines, MC3T3-E1, PDLF, rMSC and MDCK, gradient FSS stimulation did not lead to the low-FSS-inclined migration. After being cultured under gradient FSS stimulation for 6 days, the density of RAW264.7 cells and the ratio of TRAP-positive multinucleated osteoclasts in low-FSS region were significantly higher than those in high-FSS region. Therefore, osteoclast precursor cells may have special ability to sense FSS gradient and tend to actively migrate toward low-FSS region, which is regulated by calcium signaling pathway.


2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Julia C. Chen ◽  
Mardonn Chua ◽  
Raymond B. Bellon ◽  
Christopher R. Jacobs

Osteogenic lineage commitment is often evaluated by analyzing gene expression. However, many genes are transiently expressed during differentiation. The availability of genes for expression is influenced by epigenetic state, which affects the heterochromatin structure. DNA methylation, a form of epigenetic regulation, is stable and heritable. Therefore, analyzing methylation status may be less temporally dependent and more informative for evaluating lineage commitment. Here we analyzed the effect of mechanical stimulation on osteogenic differentiation by applying fluid shear stress for 24 hr to osteocytes and then applying the osteocyte-conditioned medium (CM) to progenitor cells. We analyzed gene expression and changes in DNA methylation after 24 hr of exposure to the CM using quantitative real-time polymerase chain reaction and bisulfite sequencing. With fluid shear stress stimulation, methylation decreased for both adipogenic and osteogenic markers, which typically increases availability of genes for expression. After only 24 hr of exposure to CM, we also observed increases in expression of later osteogenic markers that are typically observed to increase after seven days or more with biochemical induction. However, we observed a decrease or no change in early osteogenic markers and decreases in adipogenic gene expression. Treatment of a demethylating agent produced an increase in all genes. The results indicate that fluid shear stress stimulation rapidly promotes the availability of genes for expression, but also specifically increases gene expression of later osteogenic markers.


2006 ◽  
Vol 45 (3) ◽  
pp. e51
Author(s):  
Caroline Cheng ◽  
Dennie Tempel ◽  
Luc van Damme ◽  
Rien van Haperen ◽  
Rob Krams ◽  
...  

2019 ◽  
Vol 234 (9) ◽  
pp. 16312-16319 ◽  
Author(s):  
Danyang Yue ◽  
Mengxue Zhang ◽  
Juan Lu ◽  
Jin Zhou ◽  
Yuying Bai ◽  
...  

2017 ◽  
Vol 16 (6) ◽  
pp. 8699-8708 ◽  
Author(s):  
Liyin Yu ◽  
Xingfeng Ma ◽  
Junqin Sun ◽  
Jie Tong ◽  
Liang Shi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document