Integrity monitoring of carrier phase-based ephemeris fault detection

GPS Solutions ◽  
2020 ◽  
Vol 24 (2) ◽  
Author(s):  
Liang Li ◽  
Xiaosong Liu ◽  
Chun Jia ◽  
Chun Cheng ◽  
Jiaxiang Li ◽  
...  
2010 ◽  
Vol 63 (2) ◽  
pp. 215-231 ◽  
Author(s):  
Livio Gratton ◽  
Mathieu Joerger ◽  
Boris Pervan

The concept of Relative Receiver Autonomous Integrity Monitoring (RRAIM) using time differential carrier phase measurements is investigated in this paper. The precision of carrier phase measurements allows for mitigation of integrity hazards by implementing RRAIM monitors with tight thresholds without significantly affecting continuity. In order to avoid the need for cycle ambiguity resolution, time differences in carrier phase measurements are used as the basis for detection. In this work, we examine RRAIM within the context of the GNSS Evolutionary Architecture Study (GEAS), which explores potential architectures for aircraft navigation utilizing the satellite signals available in the mid-term future with GPS III. The objectives of the GEAS are focused on system implementations providing worldwide coverage to satisfy LPV-200 operations, and potentially beyond. In this work, we study two different GEAS implementations of RRAIM. General formulas are derived for positioning, fault detection, and protection level generation to meet a given set of integrity and continuity requirements.


2021 ◽  
Author(s):  
Yi Zhang ◽  
Ershen Wang ◽  
Jing Guo ◽  
Yao Wang ◽  
Cen Wu ◽  
...  

2019 ◽  
Vol 11 (19) ◽  
pp. 2271 ◽  
Author(s):  
Sunkyoung Yu ◽  
Donguk Kim ◽  
Junesol Song ◽  
Changdon Kee

The covariance of real-time global positioning system (GPS) orbits has been drawing attention in various fields such as user integrity, navigation performance improvement, and fault detection. The international global navigation satellite system (GNSS) service (IGS) provides real-time orbit standard deviations without correlations between the axes. However, without correlation information, the provided covariance cannot assure the performance of the orbit product, which would, in turn, causes significant problems in fault detection and user integrity. Therefore, we studied real-time GPS orbit covariance characteristics along various coordinates to effectively provide conservative covariance. To this end, the covariance and precise orbits are estimated by means of an extended Kalman filter using double-differenced carrier phase observations of 61 IGS reference stations. Furthermore, we propose a new method for providing covariance to minimize loss of correlation. The method adopted by the IGS, which neglects correlation, requires 4.5 times the size of the covariance to bind orbit errors. By comparison, our proposed method reduces this size from 4.5 to 1.3 using only one additional parameter. In conclusion, the proposed method effectively provides covariance to users.


2011 ◽  
Vol 65 (1) ◽  
pp. 41-58 ◽  
Author(s):  
Shaojun Feng ◽  
Washington Ochieng ◽  
Jaron Samson ◽  
Michel Tossaint ◽  
Manuel Hernandez-Pajares ◽  
...  

The determination of the correct integer number of carrier cycles (integer ambiguity) is the key to high accuracy positioning with carrier phase measurements from Global Navigation Satellite Systems (GNSS). There are a number of current methods for resolving ambiguities including the Least-squares AMBiguity Decorrelation Adjustment (LAMBDA) method, which is a combination of least-squares and a transformation to reduce the search space. The current techniques to determine the level of confidence (integrity) of the resolved ambiguities (i.e. ambiguity validation), usually involve the construction of test statistics, characterisation of their distribution and definition of thresholds. Example tests applied include ratio, F-distribution, t-distribution and Chi-square distribution. However, the assumptions that underpin these tests have weaknesses. These include the application of a fixed threshold for all scenarios, and therefore, not always able to provide an acceptable integrity level in the computed ambiguities. A relatively recent technique referred to as Integer Aperture (IA) based on the ratio test with a large number of simulated samples of float ambiguities requires significant computational resources. This precludes the application of IA in real time.This paper proposes and demonstrates the power of an integrity monitoring technique that is applied at the ambiguity resolution and positioning stages. The technique has the important benefit of facilitating early detection of any potential threat to the position solution, originating in the ambiguity space, while at the same time giving overall protection in the position domain based on the required navigation performance. The proposed method uses the conventional test statistic for ratio testing together with a doubly non-central F distribution to compute the level of confidence (integrity) of the ambiguities. Specifically, this is determined as a function of geometry and the ambiguity residuals from least squares based ambiguity resolution algorithms including LAMBDA. A numerical method is implemented to compute the level of confidence in real time.The results for Precise Point Positioning (PPP) with simulated and real data demonstrate the power and efficiency of the proposed method in monitoring both the integrity of the ambiguity computation and position solution processes. Furthermore, due to the fact that the method only requires information from least squares based ambiguity resolution algorithms, it is easily transferable to conventional Real Time Kinematic (RTK) positioning.


2013 ◽  
Vol 765-767 ◽  
pp. 2097-2100
Author(s):  
Jun Sun ◽  
Yong Gang Yang

A dual-mode receiver combination of GPS and Compass (BD) is introduced on the assumption when only one of the satellites had a failure, how to implement a weighting RAIM monitoring. And the GPS and BD in single mode and the GPS/BD dual-mode were simulated to produce the Fault Detection Rates and RAIM integrity availability. It is demonstrated that the dual-mode RAIM algorithm is superior to any kind of single-system RAIM algorithms.


2010 ◽  
Vol 64 (1) ◽  
pp. 75-90 ◽  
Author(s):  
Ho Yun ◽  
Youngsun Yun ◽  
Changdon Kee

Carrier phase measurements are used to provide high-accuracy estimates of position. For safety-of-life navigation applications such as precision approach and landing, integrity plays a critical role. Carrier phase-based Receiver Autonomous Integrity Monitoring (CRAIM) has been investigated for many years (Pervan et al, 1998; Feng et al, 2007). Assuming that the carrier phase error has a Gaussian distribution, conventional CRAIM algorithms were directly derived from the Pseudorange-based RAIM (PRAIM). However, the actual carrier phase error does not exactly follow the Gaussian distribution, hence the performance of the conventional CRAIM algorithm is not optimal.To approach this problem, this paper proposes a new CRAIM algorithm that uses Gaussian sum filters. A Gaussian sum filter can deal with any non-Gaussian error distribution and accurately present the posterior distributions of states. In this paper, a new method of making a Gaussian mixture model, which follows the true error distribution, is introduced. Additionally an integrity monitoring algorithm, using a Gaussian sum filter, is described in detail. The simulation results show that the proposed algorithm can have about 18% smaller Minimum Detectable Bias (MDB) and generates about 20% lower protection levels than those of the conventional CRAIM algorithm. In other words, by considering a non-Gaussian carrier phase error distribution, the new algorithm can improve the accuracy and the availability.


Navigation ◽  
2004 ◽  
Vol 51 (3) ◽  
pp. 185-197 ◽  
Author(s):  
MOON-BEOM HEO ◽  
BORIS PERVAN ◽  
SAM PULLEN ◽  
JENNIFER GAUTIER ◽  
PER ENGE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document