scholarly journals Response of planted beech (Fagus sylvatica L.) and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) saplings to herbaceous and small shrubs control on clearcuts

2012 ◽  
Vol 17 (2) ◽  
pp. 164-174 ◽  
Author(s):  
Ion Catalin Petriţan ◽  
Burghard von Lüpke ◽  
Any Mary Petriţan
2021 ◽  
Author(s):  
Alessandro Montemagno ◽  
Christophe Hissler ◽  
Victor Bense ◽  
Adriaan J. Teuling ◽  
Johanna Ziebel ◽  
...  

Abstract. Given the diverse physico-chemical properties of elements, we hypothesize that their incoherent distribution across the leaf tissues, combined with the distinct resistance to degradation that each tissue exhibits, leads to distinct turnover rates between elements. Moreover, litter layers of different ages produce diverse chemical signatures in solution during the wet degradation. To verify our hypothesis, Na, K, Mg, Mn, Ca, Pb, Al and Fe were analysed together with the Rare Earth Elements (REE) in the solid fractions and in the respective leachates of fresh leaves and different humus layers of two forested soils developed under Pseudotsuga menziesii and Fagus sylvatica L. trees. The results from the leaching experiment were also compared to the in situ REE composition of the soil solutions to clarify the impact that the litter degradation processes may have on soil solution chemical compositions. Our results clearly show that REE, Al, Fe and Pb were preferentially retained in the solid litter material, in comparison to the other cations, and that their concentrations increased over time during the litter degradation. Accordingly, different litter fractions produced different yields of elements and REE patterns in the leachates, indicating that the tree species and the age of the litter play a role in the chemical release during the degradation. In particular, the evolution of the REE patterns according to the age of the litter layers allowed us to deliver new findings on REE fractionation and mobilization during litter degradation. In particular, the LaN/YbN ratio highlights differences in litter degradation intensity between both tree species, which was not shown with major cations. We finally showed the primary control effect that litter degradation can have on the REE composition of the soil solution, which presents a positive Ce anomaly associated with the dissolution and/or transportation of Ce-enriched MnO2 particles accumulated onto the surface of the old litter due to white fungi activity. Similar MREE and HREE enrichments were also found in the leachates and the soil solution, probably due to their higher affinity to the organic acids, which represent the primary products from the organic matter degradation.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 129
Author(s):  
Tamalika Chakraborty ◽  
Albert Reif ◽  
Andreas Matzarakis ◽  
Somidh Saha

European beech (Fagus sylvatica L.) trees are becoming vulnerable to drought, with a warming climate. Existing studies disagree on how radial growth varies in European beech in response to droughts. We aimed to find the impact of multiple droughts on beech trees’ annual radial growth at their ecological drought limit created by soil water availability in the forest. Besides, we quantified the influence of competition and canopy openness on the mean basal area growth of beech trees. We carried out this study in five near-natural temperate forests in three localities of Germany and Switzerland. We quantified available soil water storage capacity (AWC) in plots laid in the transition zone from oak to beech dominated forests. The plots were classified as ‘dry’ (AWC < 60 mL) and ‘less-dry’ (AWC > 60 mL). We performed dendroecological analyses starting from 1951 in continuous and discontinuous series to study the influence of climatic drought (i.e., precipitation-potential evapotranspiration) on the radial growth of beech trees in dry and less-dry plots. We used observed values for this analysis and did not use interpolated values from interpolated historical records in this study. We selected six drought events to study the resistance, recovery, and resilience of beech trees to drought at a discontinuous level. The radial growth was significantly higher in less-dry plots than dry plots. The increase in drought had reduced tree growth. Frequent climatic drought events resulted in more significant correlations, hence, increased the dependency of tree growth on AWC. We showed that the recovery and resilience to climatic drought were higher in trees in less-dry plots than dry plots, but it was the opposite for resistance. The resistance, recovery, and resilience of the trees were heterogeneous between the events of drought. Mean growth of beech trees (basal area increment) were negatively impacted by neighborhood competition and positively influenced by canopy openness. We emphasized that beech trees growing on soil with low AWC are at higher risk of growth decline. We concluded that changes in soil water conditions even at the microsite level could influence beech trees’ growth in their drought limit under the changing climate. Along with drought, neighborhood competition and lack of light can also reduce beech trees’ growth. This study will enrich the state of knowledge about the ongoing debate on the vulnerability of beech trees to drought in Europe.


2019 ◽  
Vol 39 (5) ◽  
pp. 792-804 ◽  
Author(s):  
Pierre-Antoine Chuste ◽  
Catherine Massonnet ◽  
Dominique Gérant ◽  
Berndt Zeller ◽  
Joseph Levillain ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 924
Author(s):  
Astrid Stobbe ◽  
Maren Gumnior

In the Central German Uplands, Fagus sylvatica and Picea abies have been particularly affected by climate change. With the establishment of beech forests about 3000 years ago and pure spruce stands 500 years ago, they might be regarded as ‘neophytes’ in the Hessian forests. Palaeoecological investigations at wetland sites in the low mountain ranges and intramontane basins point to an asynchronous vegetation evolution in a comparatively small but heterogenous region. On the other hand, palynological data prove that sustainably managed woodlands with high proportions of Tilia have been persisting for several millennia, before the spread of beech took place as a result of a cooler and wetter climate and changes in land management. In view of increasingly warmer and drier conditions, Tilia cordata appears especially qualified to be an important silvicultural constituent of the future, not only due to its tolerance towards drought, but also its resistance to browsing, and the ability to reproduce vegetatively. Forest managers should be encouraged to actively promote the return to more stress-tolerant lime-dominated woodlands, similar to those that existed in the Subboreal chronozone.


Sign in / Sign up

Export Citation Format

Share Document