The effect of floating vegetation on CH4 and N2O emissions from subtropical paddy fields in China

2014 ◽  
Vol 13 (4) ◽  
pp. 425-431 ◽  
Author(s):  
Chun Wang ◽  
Shouchun Li ◽  
Derrick Y. F. Lai ◽  
Weiqi Wang ◽  
Yongyue Ma
Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2169 ◽  
Author(s):  
Tabassum Abbasi ◽  
Tasneem Abbasi ◽  
Chirchom Luithui ◽  
Shahid Abbas Abbasi

Paddy fields, which are shallow man-made wetlands, are estimated to be responsible for ~11% of the total methane emissions attributed to anthropogenic sources. The role of water use in driving these emissions, and the apportioning of the emissions to individual countries engaged in paddy cultivation, are aspects that have been mired in controversy and disagreement. This is largely due to the fact that methane (CH4) emissions not only change with the cultivar type but also regions, climate, soil type, soil conditions, manner of irrigation, type and quantity of fertilizer added—to name a few. The factors which can influence these aspects also encompass a wide range, and have origins in causes which can be physical, chemical, biological, and combinations of these. Exceedingly complex feedback mechanisms, exerting different magnitudes and types of influences on CH4 emissions under different conditions, are operative. Similar is the case of nitrous oxide (N2O); indeed, the present level of understanding of the factors which influence the quantum of its emission is still more patchy. This makes it difficult to even understand precisely the role of the myriad factors, less so model them. The challenge is made even more daunting by the fact that accurate and precise data on most of these aspects is lacking. This makes it nearly impossible to develop analytical models linking causes with effects vis a vis CH4 and N2O emissions from paddy fields. For situations like this the bioinspired artificial intelligence technique of artificial neural network (ANN), which can model a phenomenon on the basis of past data and without the explicit understanding of the mechanism phenomena, may prove useful. However, no such model for CH4 or N2O has been developed so far. Hence the present work was undertaken. It describes ANN-based models developed by us to predict CH4 and N2O emissions using soil characteristics, fertilizer inputs, and rice cultivar yield as inputs. Upon testing the predictive ability of the models with sets of data not used in model development, it was seen that there was excellent agreement between model forecasts and experimental findings, leading to correlations coefficients of 0.991 and 0.96, and root mean square error (RMSE) of 11.17 and 261.3, respectively, for CH4 and N2O emissions. Thus, the models can be used to estimate CH4 and N2O emissions from all those continuously flooded paddy wetlands for which data on total organic carbon, soil electrical conductivity, applied nitrogen, phosphorous and potassium, NPK, and grain yield is available.


Agriculture ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 29 ◽  
Author(s):  
Yo Toma ◽  
Nukhak Nufita Sari ◽  
Koh Akamatsu ◽  
Shingo Oomori ◽  
Osamu Nagata ◽  
...  

Green manure application helps maintain soil fertility, reduce chemical fertilizer use, and carbon sequestration in the soil. Nevertheless, the application of organic matter in paddy fields induces CH4 and N2O emissions. Prolonging mid-season drainage reduces CH4 emissions in paddy fields. Therefore, the combined effects of green manure application and mid-season drainage prolongation on net greenhouse gas emission (NGHGE) were investigated. Four experimental treatments were set up over a 2-year period: conventional mid-season drainage with (CMG) and without (CM) green manure and prolonged (4 or 7 days) mid-season drainage with (PMG) and without (PM) green manure. Astragalus sinicus L. seeds were sown in autumn and incorporated before rice cultivation. No significant difference in annual CH4 and N2O emissions, heterotrophic respiration, and NGHGE between treatments were observed, indicating that green manure application and mid-season drainage prolongation did not influence NGHGE. CH4 flux decreased drastically in PM and PMG during mid-season drainage under the hot and dry weather conditions. However, increasing applied carbon increases NGHGE because of increased CH4 and Rh. Consequently, combination practice of mid-season drainage prolongation and green manure utilization can be acceptable without changing NGHGE while maintaining grain yield in rice paddy fields under organically managed rice paddy fields.


Chemosphere ◽  
2012 ◽  
Vol 89 (7) ◽  
pp. 884-892 ◽  
Author(s):  
Huijing Hou ◽  
Shizhang Peng ◽  
Junzeng Xu ◽  
Shihong Yang ◽  
Zhi Mao

Agriculture ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 6 ◽  
Author(s):  
Habib Mohammad Naser ◽  
Osamu Nagata ◽  
Sarmin Sultana ◽  
Ryusuke Hatano

Since each greenhouse gas (GHG) has its own radiative capacity, all three gasses (CO2, CH4 and N2O) must be accounted for by calculating the net global warming potential (GWP) in a crop production system. To compare the impact of GHG fluxes from the rice growing and the fallow season on the annual gas fluxes, and their contribution to the GWP and carbon sequestration (CS) were evaluated. From May to April in Bibai (43°18′ N, 141°44′ E), in central Hokkaido, Japan, three rice paddy fields under actual management conditions were investigated to determine CS and the contribution of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes to GWP. Methane and N2O fluxes were measured by placing the chamber over the rice plants covering four hills and CO2 fluxes from rice plants root free space in paddy fields were taken as an indicator of soil microbial respiration (Rm) using the closed chamber method. Soil CS was calculated as the difference between net primary production (NPP) and loss of carbon (C) through Rm, emission of CH4 and harvest of crop C. Annual cumulative Rm ranged from 422 to 519 g C m−2 yr−1; which accounted for 54.7 to 55.5% of the rice growing season in particular. Annual cumulative CH4 emissions ranged from 75.5 to 116 g C m−2 yr−1 and this contribution occurred entirely during the rice growing period. Total cumulative N2O emissions ranged from 0.091 to 0.154 g N m−2 yr−1 and from 73.5 to 81.3% of the total N2O emissions recorded during the winter-fallow season. The CS ranged from −305 to −365 g C m−2 yr−1, suggesting that C input by NPP may not be compensate for the loss of soil C. The loss of C in the winter-fallow season was much higher (62 to 66%) than in the growing season. The annual net GWP from the investigated paddy fields ranged from 3823 to 5016 g CO2 equivalent m−2 yr−1. Annual GWPCH4 accounted for 71.9 to 86.1% of the annual net GWP predominantly from the rice growing period. These results indicate that CH4 dominated the net GWP of the rice paddy.


2016 ◽  
Vol 15 (2) ◽  
pp. 317-330 ◽  
Author(s):  
Mai Van Trinh ◽  
Mehreteab Tesfai ◽  
Andrew Borrell ◽  
Udaya Sekhar Nagothu ◽  
Thi Phuong Loan Bui ◽  
...  

2007 ◽  
Vol 1 (4) ◽  
pp. 418-423 ◽  
Author(s):  
Xiaojing Liu ◽  
Hui Liu ◽  
Ping Zhao ◽  
Guchou Sun ◽  
Yongbiao Lin ◽  
...  

Author(s):  
Tiago Zschornack ◽  
Carla Machado da Rosa ◽  
Cecília Estima Sacramento dos Reis ◽  
Gabriel Munhoz Pedroso ◽  
Estefânia Silva Camargo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document