Molecular sex identification of red panda (Ailurus fulgens) suitable for noninvasive genetic studies

2015 ◽  
Vol 61 (4) ◽  
pp. 641-644 ◽  
Author(s):  
Arun Kumar ◽  
Bhupen Roka ◽  
Upashna Rai ◽  
P. Anuradha Reddy
2020 ◽  
Author(s):  
Matyas Cserhati

Abstract Background: The red panda (Ailurus fulgens) is a riddle of morphology, making it hard to tell whether it is an ursid, a procyonid, a mustelid, or a member of its own family. Previous genetic studies have given quite contradictory results as to its phylogenetic placement. Results: A recently developed whole genome-based algorithm, the Whole Genome K-mer Signature algorithm was used to analyze the genomes of 28 species of Carnivora, including A. fulgens and several felid, ursid, mustelid, one mephitid species. This algorithm has the advantage of holistically using all the information in the genomes of these species. Being a genomics-based algorithm, it also reduces stochastic error to a minimum. Besides the whole genome, the mitochondrial DNA from 52 mustelids, mephitids, ursids, procyonids as well as A. fulgens were also aligned to draw further phylogenetic inferences. The results from the whole genome study show that A. fulgens is a member of the mustelid clade (p = 9·10-97). A. fulgens also separates from the mephitid Spilogala gracilis. The giant panda, Ailuropoda melanoleuca also clusters away from A. fulgens, together with other ursids (p = 1.2·10-62). This could be due to the geographic isolation of A. fulgens from other mustelid species. However, results from the mitochondrial study based on the sequence identity matrix seem to place A. fulgens into its own group.Conclusions: The main conclusion that we can draw from this study is that on a whole genome level A. fulgens belongs to the mustelid clade, and not an ursid or a mephitid. This despite the fact that previously some researchers classified A. fulgens and A. melanoleuca as relatives. Since the genotype determines the phenotype, molecular-based classification takes precedence over morphological classifications. This affirms the results of some previous studies, which studied smaller portions of the genome. The mitochondrial results could be due to differing mutational pressures compared to the nucleus. It cannot be said for sure, but it is likely that A. fulgens belongs to the mustelid clade.


2020 ◽  
Author(s):  
Matyas Cserhati

Abstract Background: The red panda (Ailurus fulgens) is a riddle of morphology, making it hard to tell whether it is an ursid, a procyonid or a member of its own family. Previous genetic studies have given contradictory results as to its phylogenetic placement.Results: Therefore, a recently developed whole genome-based algorithm, the Whole Genome K-mer Signature algorithm was used to analyze the genomes of 28 species of Carnivora, including A. fulgens and several felid, ursid, mustelid, one mephitid species. This algorithm has the advantage of holistically using all the information in the genomes of these species. Being a genomics-based algorithm, it also reduces stochastic error to a minimum.The results show that A. fulgens is a member of the mustelid clade (p = 9·10-97). A. fulgens also separates from the mephitid Spilogala gracilis. The giant panda, Ailuropoda melanoleuca also clusters away from A. fulgens, together with other ursids (p = 1.2·10-62). This could be due to the geographic isolation of A. fulgens from other mustelid species.Conclusions: The main conclusion that we can draw from this study is that on a whole genome level A. fulgens belongs to the mustelid clade, and not an ursid or a mephitid. This despite the fact that previously some researchers classified A. fulgens and A. melanoleuca as relatives. Since the genotype determines the phenotype, molecular-based classification takes precedence over morphological classifications. This affirms the results of some previous studies, which studied smaller portions of the genome. This study is more substantial because it takes the whole genome into account.


2016 ◽  
Vol 4 (1) ◽  
pp. e000305
Author(s):  
Marie Kubiak ◽  
Mark Frederick Stidworthy ◽  
Sam Sharpe
Keyword(s):  

Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 921
Author(s):  
Damber Bista ◽  
Sonam Tashi Lama ◽  
Janno Weerman ◽  
Ang Phuri Sherpa ◽  
Purushotam Pandey ◽  
...  

It is sometimes essential to have an animal in the hand to study some of their ecological and biological characteristics. However, capturing a solitary, cryptic, elusive arboreal species such as the red panda in the wild is challenging. We developed and successfully tested a protocol for tracking, trapping, immobilization, and handling of red pandas in the wild in eastern Nepal. We established a red panda sighting rate of 0.89 panda/day with a capture success rate of 0.6. We trapped and collared one animal in 3.7 days. On average, we took nearly 136 (range 50–317) min to capture an animal after spotting it. Further processing was completed in 38.5 (21–70) min. Before capture, we found it difficult to recognize the sex of the red panda and to differentiate sub-adults above six months from adults. However, body weight, body length, tail length, shoulder height, and chest girth can be used for diagnosis, as these attributes are smaller in sub-adults. Our method is a welfare-friendly way of trapping and handling wild red pandas. We report new morphometric data that could serve as a guide for field identification.


2015 ◽  
Vol 153 (2-3) ◽  
pp. 185-189 ◽  
Author(s):  
W.M. Zoll ◽  
D.B. Needle ◽  
S.J. French ◽  
A. Lim ◽  
S. Bolin ◽  
...  

2018 ◽  
Vol 15 ◽  
pp. e00420 ◽  
Author(s):  
Krishna Prasad Acharya ◽  
Saroj Shrestha ◽  
Prakash Kumar Paudel ◽  
Ang Phuri Sherpa ◽  
Shant Raj Jnawali ◽  
...  

2020 ◽  
Author(s):  
Songrui Liu ◽  
Yunli Li ◽  
Chanjuan Yue ◽  
Dongsheng Zhang ◽  
Xiaoyan Su ◽  
...  

Abstract Background Disease prevention and control is a significant part during the ex-situ conservation of the red panda (Ailurus fulgens) with bacterial infection being one of the important threats to the health of the captive population. So far, there was no systematic and detailed publications about the red panda-related E. coli disease. This study was conducted for the purpose of determining the cause of death, etiology and pathogenesis on a red panda through clinical symptoms, complete blood count, biochemical analysis, pathological diagnosis, antimicrobial susceptibility test, mouse pathogenicity test, and bacterial whole genome sequencing.Results A bacterial strain confirmed as Uropathogenic Escherichia coli (UPEC) was isolated from one captive dead red panda, which is resistant to most of the β-lactam drugs and a small number of aminoglycoside medications. The mouse pathogenicity test results showed the strains isolated postmortem from mice were the same as from the dead red panda, and the pathological findings were similar to the red panda while they were not completely the same. These pathological differences between red panda and mice may be related to the routes of infection and perhaps species differences and tolerance. The whole genome sequencing results showed that the isolated strain contained P pili, type I pili and iron uptake system related factors, which were closely related to its nephrotoxicity. Conclusion The red panda died of bacterial infection which was identified as Uropathogenic Escherichia coli. The pathogenic mechanisms of the strain are closely related to the expression of specific virulence genes.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Supriyo Dalui ◽  
Hiren Khatri ◽  
Sujeet Kumar Singh ◽  
Shambadeb Basu ◽  
Avijit Ghosh ◽  
...  

Abstract Wildlife management in rapid changing landscapes requires critical planning through cross cutting networks, and understanding of landscape features, often affected by the anthropogenic activities. The present study demonstrates fine-scale spatial patterns of genetic variation and contemporary gene flow of red panda (Ailurus fulgens) populations with respect to landscape connectivity in Kangchenjunga Landscape (KL), India. The study found about 1,309.54 km2 area suitable for red panda in KL—India, of which 62.21% area fell under the Protected Area network. We identified 24 unique individuals from 234 feces collected at nine microsatellite loci. The spatially explicit and non-explicit Bayesian clustering algorithms evident to exhibit population structuring and supported red panda populations to exist in meta-population frame work. In concurrence to the habitat suitability and landscape connectivity models, gene flow results supported a contemporary asymmetric movement of red panda by connecting KL—India in a crescent arc. We demonstrate the structural-operational connectivity of corridors in KL—India that facilitated red panda movement in the past. We also seek for cooperation in Nepal, Bhutan and China to aid in preparing for a comprehensive monitoring plan for the long-term conservation and management of red panda in trans-boundary landscapes.


Sign in / Sign up

Export Citation Format

Share Document