Temporal variability of diverse mountain permafrost slope movements derived from multi-year daily GPS data, Mattertal, Switzerland

Landslides ◽  
2015 ◽  
Vol 13 (1) ◽  
pp. 67-83 ◽  
Author(s):  
Vanessa Wirz ◽  
Marten Geertsema ◽  
Stephan Gruber ◽  
Ross S. Purves
2014 ◽  
Vol 2 (2) ◽  
pp. 1153-1192
Author(s):  
V. Wirz ◽  
S. Gruber ◽  
S. Gubler ◽  
R. S. Purves

Abstract. Knowledge of processes and factors affecting slope instability is essential for detecting and monitoring potentially hazardous slopes. Knowing the timing of acceleration or deceleration of slope movements can help to identify important controls and hence to increase our process understanding. For this methods to derive reliable velocity estimations are important. The aim of this study was to develop and test a method to derive velocities based on noisy GPS data of various movement patterns and variable signal-to-noise-ratio (SNR). Derived velocities represent reliable average velocities representative for a given period. The applied smoothing windows directly depends on the SNR of the data, which is modeled using Monte Carlo simulation. Hence, all obtained velocities have a SNR above a predefined threshold and for each velocity period the SNR is known, which helps to interpret the temporal variability. In sensitivity tests with synthetic time-series the method was compared to established methods to derive velocities based on GPS positions, including spline and Kernel regression smoothing. Those sensitivity tests clearly demonstrated that methods are required that adopt the time window to the underlying error of the position data. The presented method performs well, even for a high noise levels and variable SNR. Different methods were further applied to investigate the inter-annual variability of permafrost slope movements based on daily GPS- and inclinometer data. In the framework of the new method, we further analyzed the error caused by a rotation of the GPS mast (hmast = 1.5 m). If the tilting is higher than its uncertainty, the rotational movement can be separated and the direction of movement became more uniform. At one GPS station, more than 12% of the measured displacement at the antenna was caused by the rotation of the station.


2014 ◽  
Vol 14 (9) ◽  
pp. 2503-2520 ◽  
Author(s):  
V. Wirz ◽  
J. Beutel ◽  
S. Gruber ◽  
S. Gubler ◽  
R. S. Purves

Abstract. Detecting and monitoring of moving and potentially hazardous slopes requires reliable estimations of velocities. Separating any movement signal from measurement noise is crucial for understanding the temporal variability of slope movements and detecting changes in the movement regime, which may be important indicators of the process. Thus, methods capable of estimating velocity and its changes reliably are required. In this paper we develop and test a method for deriving velocities based on noisy GPS (Global Positioning System) data, suitable for various movement patterns and variable signal-to-noise-ratios (SNR). We tested this method on synthetic data, designed to mimic the characteristics of diverse processes, but where we have full knowledge of the underlying velocity patterns, before applying it to explore data collected.


2011 ◽  
Vol 22 (4) ◽  
pp. 361-377 ◽  
Author(s):  
Ketil Isaksen ◽  
Rune Strand Ødegård ◽  
Bernd Etzelmüller ◽  
Christin Hilbich ◽  
Christian Hauck ◽  
...  

2020 ◽  
Vol 655 ◽  
pp. 185-198
Author(s):  
J Weil ◽  
WDP Duguid ◽  
F Juanes

Variation in the energy content of prey can drive the diet choice, growth and ultimate survival of consumers. In Pacific salmon species, obtaining sufficient energy for rapid growth during early marine residence is hypothesized to reduce the risk of size-selective mortality. In order to determine the energetic benefit of feeding choices for individuals, accurate estimates of energy density (ED) across prey groups are required. Frequently, a single species is assumed to be representative of a larger taxonomic group or related species. Further, single-point estimates are often assumed to be representative of a group across seasons, despite temporal variability. To test the validity of these practices, we sampled zooplankton prey of juvenile Chinook salmon to investigate fine-scale taxonomic and temporal differences in ED. Using a recently developed model to estimate the ED of organisms using percent ash-free dry weight, we compared energy content of several groups that are typically grouped together in growth studies. Decapod megalopae were more energy rich than zoeae and showed family-level variability in ED. Amphipods showed significant species-level variability in ED. Temporal differences were observed, but patterns were not consistent among groups. Bioenergetic model simulations showed that growth rate of juvenile Chinook salmon was almost identical when prey ED values were calculated on a fine scale or on a taxon-averaged coarse scale. However, single-species representative calculations of prey ED yielded highly variable output in growth depending on the representative species used. These results suggest that the latter approach may yield significantly biased results.


GEOMATIKA ◽  
2020 ◽  
Vol 26 (2) ◽  
pp. 107
Author(s):  
Leni Sophia Heliani ◽  
Cecep Pratama ◽  
Parseno Parseno ◽  
Nurrohmat Widjajanti ◽  
Dwi Lestari

<p><em>Sangihe-Moluccas region is the most active seismicity in Indonesia. Between 2015 to 2018 there is four M6 class earthquake occurred close to the Sangihe-Moluccas region. These seismic active regions representing active deformation which is recorded on installed GPS for both campaign and continuous station. However, the origin of those frequent earthquakes has not been well understood especially related to GPS-derived secular motion. Therefore, we intend to estimate the secular motion inside and around Sangihe island. On the other hand, we also evaluate the effect of seismicity on GPS sites. Since our GPS data were conducted on yearly basis, we used an empirical global model of surface displacement due to coseismic activity. We calculate the offset that may be contained in the GPS site during its period</em><em>. </em><em>We remove the offset and estimate again the secular motion using linear least square. Hence, in comparison with the secular motion without considering the seismicity, we observe small change but systematically shifting the motion. We concluded the seismicity in the Molucca sea from 2015 to 2018 systematically change the secular motion around Sangihe Island at the sub-mm level. Finally, we obtained the secular motion toward each other between the east and west side within 1 to 5.5 cm/year displacement. </em></p>


Sign in / Sign up

Export Citation Format

Share Document