scholarly journals Reconstruction of tectonically disrupted carbonates through quantitative microfacies analyses: an example from the Middle Triassic of Southern Italy

Facies ◽  
2021 ◽  
Vol 67 (3) ◽  
Author(s):  
Adriano Guido ◽  
Giuseppe Palladino ◽  
Matteo Sposato ◽  
Franco Russo ◽  
Giacomo Prosser ◽  
...  

AbstractThe main goal of the paper is the reconstruction of a Middle Triassic buildup cropping out in the central part of the Southern Apennines. Middle Triassic reefs of the western Tethys realm are well known in the Northern and Southern Alps. In contrast, few studies of the Anisian–Ladinian carbonate platforms of the southern Apennines are available, due to the diagenetic alteration and tectonic disruption that hinder their paleoenvironmental and stratigraphic reconstruction. In an attempt to fill this gap, and to improve the knowledge on the Anisian–Ladinian carbonates of central Mediterranean area, this research is focused on a carbonate buildup cropping out in the “La Cerchiara” area, Sasso di Castalda (Basilicata, Southern Italy). The buildup, affected by intense tectonic deformation associated with the development of the Apennine thrust and fold belt, was studied using a statistical evaluation of the quantitative microfacies data. The research enabled a reconstruction of the original stratigraphic relationships of the various buildup fragments. A positive linear regression between the sample positions vs the percentage of autochthonous carbonates indicates an increase of the autochthons carbonate toward the top of the succession. The allochthonous fabrics (packstone/wackestone) at the base of the section (Unit IIIa) pass gradually upward into autochthonous (boundstones) facies (Units IIIb, I), consisting of microbialites (clotted peloidal micrite, microbial-derived laminae, and aphanitic micrite), microproblematica and cyanobacterial crusts, with few encrusting skeletal organisms. Statistical data suggest that units IIIa, IIIb, and I are in stratigraphic order while unit II appears to have been moved by tectonic dislocation from its original position at the base of the succession. The absence of metazoan reef framework, and the richness of micro-encrusters, autochthonous micrite and synsedimentary cements, suggest a mud-mound style of growth for the carbonate bodies of the Southern Apennine during the Anisian.

2015 ◽  
Vol 417 ◽  
pp. 236-260 ◽  
Author(s):  
M.J. Escudero-Mozo ◽  
A. Márquez-Aliaga ◽  
A. Goy ◽  
J. Martín-Chivelet ◽  
J. López-Gómez ◽  
...  

2005 ◽  
Vol 176 (1) ◽  
pp. 3-22 ◽  
Author(s):  
Špela Goričan ◽  
Josip Halamić ◽  
Tonći Grgasović ◽  
Tea Kolar-Jurkovšek

Abstract Middle Triassic arc-related extensional tectonics in the western Tethys generated a complex pattern of intra-and backarc basins. We studied volcano-sedimentary successions of subsided continental-margin blocks (Mts. Žumberak and Ivanščica) and of dismembered incomplete ophiolite sequences interpreted as remnants of a backarc basin (Mts. Medvednica and Kalnik) in northwestern Croatia. We dated the successions with radiolarians, conodonts, foraminifers, algae, and sponges. The continental margin experienced a phase of accelerated subsidence in the late Anisian that was approximately coincident with the onset of intermediate and acidic volcanism; pelagic sediments with volcaniclastics accumulated atop subsided carbonate platforms. These relatively shallow basins were later infilled completely by prograding platforms in the late Ladinian-Carnian. In the backarc basin, sea-floor spreading initiated near the Anisian-Ladinian boundary and continued into the late Carnian. Pillow basalts were erupted and interlayered with radiolarian cherts and shales. The studied area was a part of a larger Triassic arc-backarc system preserved in the southern Alps, Alpine-Carpathian Belt, Dinarides, and Hellenides. Volcano-sedimentary successions of Mts. Medvednica and Kalnik are relics of the Meliata-Maliak backarc basin. In comparison to other previously dated oceanic remnants of this system, the longest continuous sea-floor spreading is now documented in one restricted tectonic unit.


2011 ◽  
Vol 3 (2) ◽  
pp. 789-838 ◽  
Author(s):  
M. Di Lucia ◽  
M. Mutti ◽  
M. Parente

Abstract. Low resolution and lack of chronostratigraphic calibration of carbonate platform biostratigraphy hinder precise correlation with coeval deep-water successions. This is the main obstacle when studying the record of Mesozoic oceanic anoxic events in carbonate platforms. In this paper we use carbon isotope stratigraphy to produce the first chronostratigraphic calibration of the Barremian–Aptian biostratigraphy of the Apenninic carbonate platform of southern Italy. According to our calibration, the "Selli level" black shales of epicontinental and oceanic basins corresponds in the southern Apenninic carbonate platform to the interval between the "Orbitolina level", characterized by the association of Mesorbitolina parva and Mesorbitolina texana, and the second acme of Salpingoporella dinarica. The biocalcification crisis of nannoconids corresponds to the interval going from the first acme of S. dinarica to just above the top of the "Orbitolina level". Since these bioevents have been widely recognized beyond the Apenninic platform, our calibration can be used to pinpoint the interval corresponding to the Early Aptian oceanic anoxic event in other carbonate platforms of central and southern Tethys.


Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 125
Author(s):  
Giacomo Prosser ◽  
Giuseppe Palladino ◽  
Dario Avagliano ◽  
Francesco Coraggio ◽  
Eleonora Maria Bolla ◽  
...  

This paper shows the main results of a multidisciplinary study performed along the southeastern sector of the Agri Valley in Basilicata (Southern Italy), where Cenozoic units, crucial for constraining the progressive evolution of the Southern Apennine thrust and fold belt and, more in general, the geodynamic evolution of the Mediterranean area are widely exposed. In particular, we aimed at understanding the stratigraphic and tectonic setting of deep-sea, thrust-top Cenozoic units exposed immediately to north of Montemurro, between Costa Molina and Monte dell’Agresto. In the previous works different units, showing similar sedimentological characteristics but uncertain age attribution, have been reported in the study area. In our study, we focussed on the Albidona Formation, pertaining to the Liguride realm, which shows most significant uncertainties regarding the age and the stratigraphic setting. The study was based on a detailed field survey which led to a new geological map of the area. This was supported by new stratigraphic, biostratigraphic and structural analyses. Biostratigraphic analysis provided an age not older than the upper Ypresian and not younger than the early Priabonian. Recognition of marker stratigraphic horizons strongly helped in the understanding of the stratigraphy of the area. The study allowed a complete revision of the stratigraphy of the outcropping Cenozoic units, the recognition of until now unknown tectonic structures and the correlation between surface and subsurface geology.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 118
Author(s):  
Giovanni Ruggieri ◽  
Vincenzo Allocca ◽  
Flavio Borfecchia ◽  
Delia Cusano ◽  
Palmira Marsiglia ◽  
...  

In many Italian regions, and particularly in southern Italy, karst aquifers are the main sources of drinking water and play a crucial role in the socio-economic development of the territory. Hence, estimating the groundwater recharge of these aquifers is a fundamental task for the proper management of water resources, while also considering the impacts of climate changes. In the southern Apennines, the assessment of hydrological parameters that is needed for the estimation of groundwater recharge is a challenging issue, especially for the spatial and temporal inhomogeneity of networks of rain and air temperature stations, as well as the variable geomorphological features and land use across mountainous karst areas. In such a framework, the integration of terrestrial and remotely sensed data is a promising approach to limit these uncertainties. In this research, estimations of actual evapotranspiration and groundwater recharge using remotely sensed data gathered by the Moderate Resolution Imaging Spectrometer (MODIS) satellite in the period 2000–2014 are shown for karst aquifers of the southern Apennines. To assess the uncertainties affecting conventional methods based on empirical formulas, the values estimated by the MODIS dataset were compared with those calculated by Coutagne, Turc, and Thornthwaite classical empirical formulas, which were based on the recordings of meteorological stations. The annual rainfall time series of 266 rain gauges and 150 air temperature stations, recorded using meteorological networks managed by public agencies in the period 2000–2014, were considered for reconstructing the regional distributed models of actual evapotranspiration (AET) and groundwater recharge. Considering the MODIS AET, the mean annual groundwater recharge for karst aquifers was estimated to be about 448 mm·year−1. In contrast, using the Turc, Coutagne, and Thornthwaite methods, it was estimated as being 494, 533, and 437 mm·year−1, respectively. The obtained results open a new methodological perspective for the assessment of the groundwater recharge of karst aquifers at the regional and mean annual scales, allowing for limiting uncertainties and taking into account a spatial resolution greater than that of the existing meteorological networks. Among the most relevant results obtained via the comparison of classical approaches used for estimating evapotranspiration is the good matching of the actual evapotranspiration estimated using MODIS data with the potential evapotranspiration estimated using the Thornthwaite formula. This result was considered linked to the availability of soil moisture for the evapotranspiration demand due to the relevant precipitation in the area, the general occurrence of soils covering karst aquifers, and the dense vegetation.


2017 ◽  
Vol 68 (1) ◽  
pp. 57-67 ◽  
Author(s):  
Marcello Schiattarella ◽  
Salvatore Ivo Giano ◽  
Dario Gioia

Abstract Uplift and erosion rates have been calculated for a large sector of the Campania-Lucania Apennine and Calabrian arc, Italy, using both geomorphological observations (elevations, ages and arrangement of depositional and erosional land surfaces and other morphotectonic markers) and stratigraphical and structural data (sea-level related facies, base levels, fault kinematics, and fault offset estimations). The values of the Quaternary uplift rates of the southern Apennines vary from 0.2 mm/yr to about 1.2–1.3 mm/yr. The erosion rates from key-areas of the southern Apennines, obtained from both quantitative geomorphic analysis and missing volumes calculations, has been estimated at 0.2 mm/yr since the Middle Pleistocene. Since the Late Pleistocene erosion and uplift rates match well, the axial-zone landscape could have reached a flux steady state during that time, although it is more probable that the entire study area may be a transient landscape. Tectonic denudation phenomena — leading to the exhumation of the Mesozoic core of the chain — followed by an impressive regional planation started in the Late Pliocene have to be taken into account for a coherent explanation of the morphological evolution of southern Italy.


Sign in / Sign up

Export Citation Format

Share Document