Rapid microfluidic mixer utilizing sharp corner structures

2017 ◽  
Vol 21 (3) ◽  
Author(s):  
Liang-Liang Fan ◽  
Xiao-Liang Zhu ◽  
Hong Zhao ◽  
Jiang Zhe ◽  
Liang Zhao
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qinyu Qian ◽  
Pengfei Liu ◽  
Li Fan ◽  
Liang Zhao ◽  
Chinhua Wang

AbstractWe report on a non-sharp-corner quarter wave plate (NCQW) within the single layer of only 8 nm thickness structured by the Ag hollow elliptical ring array, where the strong localized surface plasmons (LSP) resonances are excited. By manipulating the parameters of the hollow elliptical ring, the transmitted amplitude and phase of the two orthogonal components are well controlled. The phase difference of π/2 and amplitude ratio of 1 is realized simultaneously at the wavelength of 834 nm with the transmission of 0.46. The proposed NCQW also works well in an ultrawide wavelength band of 110 nm, which suggests an efficient way of exciting LSP resonances and designing wave plates, and provides a great potential for advanced nanophotonic devices and integrated photonic systems.


Lab on a Chip ◽  
2014 ◽  
Vol 14 (3) ◽  
pp. 584-591 ◽  
Author(s):  
Drew P. Kise ◽  
Donny Magana ◽  
Michael J. Reddish ◽  
R. Brian Dyer

Author(s):  
Joseph R. Nalbach ◽  
Dave Jao ◽  
Douglas G. Petro ◽  
Kyle M. Raudenbush ◽  
Shibbir Ahmad ◽  
...  

A common method to precisely control the material properties is to evenly distribute functional nanomaterials within the substrate. For example, it is possible to mix a silk solution and nanomaterials together to form one tuned silk sample. However, the nanomaterials are likely to aggregate in the traditional manual mixing processes. Here we report a pilot study of utilizing specific microfluidic mixing designs to achieve a uniform nanomaterial distribution with minimal aggregation. Mixing patterns are created based on classic designs and then validated by experimental results. The devices are fabricated on polydimethylsiloxane (PDMS) using 3D printed molds and soft lithography for rapid replication. The initial mixing performance is validated through the mixing of two solutions with colored dyes. The microfluidic mixer designs are further analyzed by creating silk-based film samples. The cured film is inspected with scanning electron microscopy (SEM) to reveal the distribution uniformity of the dye particles within the silk material matrix. Our preliminary results show that the microfluidic mixing produces uniform distribution of dye particles. Because the microfluidic device can be used as a continuous mixing tool, we believe it will provide a powerful platform for better preparation of silk materials. By using different types of nanomaterials such as graphite (demonstrated in this study), graphene, carbon nanotubes, and magnetic nanoparticles, the resulting silk samples can be fine-tuned with desired electrical, mechanical, and magnetic properties.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Maode Yan ◽  
Ye Tang ◽  
Panpan Yang ◽  
Lei Zuo

We investigate the vehicle platoon problems, where the actuator saturation and absent velocity measurement are taken into consideration. Firstly, a novel algorithm, where a smooth function is introduced to deal with the sharp corner of the input signals, is proposed for a group of vehicles with actuator saturation by using the consensus theory. Secondly, by applying an auxiliary system for the followers to estimate the velocities, a control strategy for the vehicle platoon with actuator saturation and absent velocity measurement is designed via the adaptive control approach. Finally, numerical simulations are provided to illustrate the effectiveness of the proposed approaches.


Author(s):  
Asep Saepul Rohman ◽  
Budi Mulyanti ◽  
Roer Eka Pawinanto ◽  
Arjuni Budi Pantjawati
Keyword(s):  

2015 ◽  
Vol 137 (9) ◽  
Author(s):  
Teng Zhou ◽  
Yifan Xu ◽  
Zhenyu Liu ◽  
Sang Woo Joo

Topology optimization method is applied to a contraction–expansion structure, based on which a simplified lateral flow structure is generated using the Boolean operation. A new one-layer mixer is then designed by sequentially connecting this lateral structure and bent channels. The mixing efficiency is further optimized via iterations on key geometric parameters associated with the one-layer mixer designed. Numerical results indicate that the optimized mixer has better mixing efficiency than the conventional contraction–expansion mixer for a wide range of the Reynolds number.


Sign in / Sign up

Export Citation Format

Share Document