scholarly journals 1022 Dislocation nucleation from a sharp corner in copper : Difference between 90° partial and 30° partial

2010 ◽  
Vol 2010.23 (0) ◽  
pp. 537-539
Author(s):  
Yu SUN ◽  
Satoshi IZUMI ◽  
Shotaro HARA ◽  
Shinsuke SAKAI
2008 ◽  
Vol 104 (3) ◽  
pp. 033513 ◽  
Author(s):  
Satoshi Izumi ◽  
Sidney Yip

2011 ◽  
Vol 5 (1) ◽  
pp. 54-61 ◽  
Author(s):  
Yu SUN ◽  
Satoshi IZUMI ◽  
Shotaro HARA ◽  
Shinsuke SAKAI

Author(s):  
M. H. Rhee ◽  
W. A. Coghlan

Silicon is believed to be an almost perfectly brittle material with cleavage occurring on {111} planes. In such a material at room temperature cleavage is expected to occur prior to any dislocation nucleation. This behavior suggests that cleavage fracture may be used to produce usable flat surfaces. Attempts to show this have failed. Such fractures produced in semiconductor silicon tend to occur on planes of variable orientation resulting in surfaces with a poor surface finish. In order to learn more about the mechanisms involved in fracture of silicon we began a HREM study of hardness indent induced fractures in thin samples of oxidized silicon.Samples of single crystal silicon were oxidized in air for 100 hours at 1000°C. Two pieces of this material were glued together and 500 μm thick cross-section samples were cut from the combined piece. The cross-section samples were indented using a Vicker's microhardness tester to produce cracks. The cracks in the samples were preserved by thinning from the back side using a combination of mechanical grinding and ion milling.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 369
Author(s):  
Jianhui Mao ◽  
Wenjun Liu ◽  
Dongfang Li ◽  
Chenkai Zhang ◽  
Yi Ma

As an excellent multifunctional single crystal, potassium dihydrogen phosphate (KDP) is a well-known, difficult-to-process material for its soft-brittle and deliquescent nature. The surface mechanical properties are critical to the machining process; however, the characteristics of deformation behavior for KDP crystals have not been well studied. In this work, the strain rate effect on hardness was investigated on the mechanically polished tripler plane of a KDP crystal relying on nanoindentation technology. By increasing the strain rate from 0.001 to 0.1 s−1, hardness increased from 1.67 to 2.07 GPa. Hence, the strain rate sensitivity was determined as 0.053, and the activation volume of dislocation nucleation was 169 Å3. Based on the constant load-holding method, creep deformation was studied at various holding depths at room temperature. Under the spherical tip, creep deformation could be greatly enhanced with increasing holding depth, which was mainly due to the enlarged holding strain. Under the self-similar Berkovich indenter, creep strain could be reduced at a deeper location. Such an indentation size effect on creep deformation was firstly reported for KDP crystals. The strain rate sensitivity of the steady-state creep flow was estimated, and the creep mechanism was qualitatively discussed.


2021 ◽  
Vol 7 (8) ◽  
pp. eabc6714 ◽  
Author(s):  
Kolan Madhav Reddy ◽  
Dezhou Guo ◽  
Shuangxi Song ◽  
Chun Cheng ◽  
Jiuhui Han ◽  
...  

The failure of superhard materials is often associated with stress-induced amorphization. However, the underlying mechanisms of the structural evolution remain largely unknown. Here, we report the experimental measurements of the onset of shear amorphization in single-crystal boron carbide by nanoindentation and transmission electron microscopy. We verified that rate-dependent loading discontinuity, i.e., pop-in, in nanoindentation load-displacement curves results from the formation of nanosized amorphous bands via shear amorphization. Stochastic analysis of the pop-in events reveals an exceptionally small activation volume, slow nucleation rate, and lower activation energy of the shear amorphization, suggesting that the high-pressure structural transition is activated and initiated by dislocation nucleation. This dislocation-mediated amorphization has important implications in understanding the failure mechanisms of superhard materials at stresses far below their theoretical strengths.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qinyu Qian ◽  
Pengfei Liu ◽  
Li Fan ◽  
Liang Zhao ◽  
Chinhua Wang

AbstractWe report on a non-sharp-corner quarter wave plate (NCQW) within the single layer of only 8 nm thickness structured by the Ag hollow elliptical ring array, where the strong localized surface plasmons (LSP) resonances are excited. By manipulating the parameters of the hollow elliptical ring, the transmitted amplitude and phase of the two orthogonal components are well controlled. The phase difference of π/2 and amplitude ratio of 1 is realized simultaneously at the wavelength of 834 nm with the transmission of 0.46. The proposed NCQW also works well in an ultrawide wavelength band of 110 nm, which suggests an efficient way of exciting LSP resonances and designing wave plates, and provides a great potential for advanced nanophotonic devices and integrated photonic systems.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Maode Yan ◽  
Ye Tang ◽  
Panpan Yang ◽  
Lei Zuo

We investigate the vehicle platoon problems, where the actuator saturation and absent velocity measurement are taken into consideration. Firstly, a novel algorithm, where a smooth function is introduced to deal with the sharp corner of the input signals, is proposed for a group of vehicles with actuator saturation by using the consensus theory. Secondly, by applying an auxiliary system for the followers to estimate the velocities, a control strategy for the vehicle platoon with actuator saturation and absent velocity measurement is designed via the adaptive control approach. Finally, numerical simulations are provided to illustrate the effectiveness of the proposed approaches.


1998 ◽  
Vol 73 (8) ◽  
pp. 1074-1076 ◽  
Author(s):  
Achim Trampert ◽  
Klaus H. Ploog ◽  
Eric Tournié

Sign in / Sign up

Export Citation Format

Share Document