The interactions between bloodstream and vascular structure on aortic dissecting aneurysmal model: A numerical study

2013 ◽  
Vol 29 (3) ◽  
pp. 462-468 ◽  
Author(s):  
Zeng-Sheng Chen ◽  
Zhan-Ming Fan ◽  
Xi-Wen Zhang
1998 ◽  
Vol 77 (2) ◽  
pp. 473-484 ◽  
Author(s):  
M. Sampoli, P. Benassi, R. Dell'Anna,

Phlebologie ◽  
2010 ◽  
Vol 39 (03) ◽  
pp. 167-175
Author(s):  
M. Poetke ◽  
P. Urban ◽  
H.-P. Berlien

SummaryVascular malformations are structural abnormalities, errors of vascular morphogenesis, which can be localized in all parts of the vascular system. All vascular malformations by definition, are present at birth and grow proportionately with the child; their volume can change. In contrast to the haemangiomas, which only proliferate from the endothelial cells the division in stages is of clinical importance. Vascular malformations are divided from the part of vascular system, which is affected.In principle the techniques of laser application in congenital vascular tumours like haemangiomas and in vascular malformations are similar, but the aim is different. In tumours the aim is to induce regression, in vascular malformations the aim is to destroy the pathologic vascular structure because there is no spontaneous regression. This means that the parameters for treatment of vascular malformations must be more aggressive than for vascular tumours.


2020 ◽  
pp. 57-65
Author(s):  
Eusébio Conceiçã ◽  
João Gomes ◽  
Maria Manuela Lúcio ◽  
Jorge Raposo ◽  
Domingos Xavier Viegas ◽  
...  

This paper refers to a numerical study of the hypo-thermal behaviour of a pine tree in a forest fire environment. The pine tree thermal response numerical model is based on energy balance integral equations for the tree elements and mass balance integral equation for the water in the tree. The simulation performed considers the heat conduction through the tree elements, heat exchanges by convection between the external tree surfaces and the environment, heat exchanges by radiation between the flame and the external tree surfaces and water heat loss by evaporation from the tree to the environment. The virtual three-dimensional tree model has a height of 7.5 m and is constituted by 8863 cylindrical elements representative of its trunks, branches and leaves. The fire front has 10 m long and a 2 m high. The study was conducted taking into account that the pine tree is located 5, 10 or 15 m from the fire front. For these three analyzed distances, the numerical results obtained regarding to the distribution of the view factors, mean radiant temperature and surface temperatures of the pine tree are presented. As main conclusion, it can be stated that the values of the view factor, MRT and surface temperatures of the pine tree decrease with increasing distance from the pine tree in front of fire.


2013 ◽  
Author(s):  
Pancheewa Benjamasutin ◽  
◽  
Ponthong Rijana ◽  
Phongchayont Srisuwan ◽  
Aussadavut Dumrongsiri

2013 ◽  
Author(s):  
Artchapong Hassametto ◽  
Preerawadee Chaiboontun ◽  
Chattraporn Prajuabwan ◽  
Laphatrada Khammuang ◽  
Aussadavut Dumrongsiri

Sign in / Sign up

Export Citation Format

Share Document