Closed-form dynamics of a hexarot parallel manipulator by means of the principle of virtual work

2018 ◽  
Vol 34 (5) ◽  
pp. 883-895 ◽  
Author(s):  
Siamak Pedrammehr ◽  
Saeid Nahavandi ◽  
Hamid Abdi
2006 ◽  
Vol 06 (02) ◽  
pp. 163-177 ◽  
Author(s):  
M. A. BRADFORD

This paper considers the nonlinear in-plane behaviour of a circular arch subjected to thermal loading only. The arch is pinned at its ends, with the pins being on roller supports attached to longitudinal elastic springs that model an elastic foundation, or the restraint provided by adjacent members in a structural assemblage. By using a nonlinear formulation of the strain-displacement relationship, the principle of virtual work is used to produce the differential equations of in-plane equilibrium, as well as the statical boundary conditions that govern the structural behaviour under thermal loading. These equations are solved to produce the equilibrium equations in closed form. The possibility of thermal buckling of the arch is addressed by considering an adjacent buckled equilibrium configuration, and the differential equilibrium equations for this buckled state are also derived from the principle of virtual work. It is shown that unless the arch is flat, in which case it replicates a straight column, thermal buckling of the arch in the plane of its curvature cannot occur, and the arch deflects transversely without bound in the elastic range as the temperature increases. The nonlinear behaviour of a flat arch (with a small included angle) is similar to that of a column with a small initial geometric imperfection under axial loading, while the nonlinearity and magnitude of the deflections decrease with an increase of the included angle at a given temperature. By using the closed form solutions for the problem, the influence of the stiffness of the elastic spring supports is considered, as is the attainment of temperature-dependent first yielding of a steel arch.


Robotica ◽  
2014 ◽  
Vol 34 (3) ◽  
pp. 687-702 ◽  
Author(s):  
Bo Hu ◽  
Jingjing Yu ◽  
Yi Lu

SUMMARYThe inverse dynamics model of a novel (3-UPU)+(3-UPS+S) serial–parallel manipulator (S-PM) formed by a 3-UPU PM and a 3-UPS+S PM connected in serial is studied in this paper. First, the inverse position, velocity, and acceleration of this S-PM are studied systematically. Second, the velocity mapping relations between each component and the terminal platform of (3-UPU)+(3-UPS+S) S-PM are derived. Third, the dynamics model of the whole (3-UPU)+(3-UPS+S) S-PM is established by means of the principle of virtual work. The process for establishing the dynamics model of this S-PM is fit for other S-PMs.


2013 ◽  
Vol 455 ◽  
pp. 360-365
Author(s):  
Yong Gang Li ◽  
Li Xin Xu ◽  
Hui Wang

Dynamics formulation is a primary task for dynamic optimization, control strategy design and servomotor parameters estimation of the parallel manipulator (PM). In this paper, by using the simple operation form of reciprocal screw and Lie Algebra, the compact expressions of complete Jacobian and Hessian matrix are derived. Then the inverse dynamics of 3PRS parallel manipulator is formulated based on the efficient principle of virtual work. In this model, the generalized forces of both actuation and constraint can be solved. Finally, a numerical simulation example is given to demonstrate this simple yet effective approach.


Robotica ◽  
2009 ◽  
Vol 27 (2) ◽  
pp. 259-268 ◽  
Author(s):  
Yongjie Zhao ◽  
Feng Gao

SUMMARYIn this paper, the inverse dynamics of the 6-dof out-parallel manipulator is formulated by means of the principle of virtual work and the concept of link Jacobian matrices. The dynamical equations of motion include the rotation inertia of motor–coupler–screw and the term caused by the external force and moment exerted at the moving platform. The approach described here leads to efficient algorithms since the constraint forces and moments of the robot system have been eliminated from the equations of motion and there is no differential equation for the whole procedure. Numerical simulation for the inverse dynamics of a 6-dof out-parallel manipulator is illustrated. The whole actuating torques and the torques caused by gravity, velocity, acceleration, moving platform, strut, carriage, and the rotation inertia of the lead screw, motor rotor and coupler have been computed.


Robotica ◽  
2015 ◽  
Vol 34 (6) ◽  
pp. 1383-1402 ◽  
Author(s):  
Ali Taherifar ◽  
Hassan Salarieh ◽  
Aria Alasty ◽  
Mohammad Honarvar

SUMMARYThe N-3 Revolute-Prismatic-Spherical (N-3RPS) manipulator is a kind of serial-parallel manipulator and has higher stiffness and accuracy compared with serial mechanisms, and a larger workspace compared with parallel mechanisms. The locking mechanism in each joint allows the manipulator to be controlled by only three wires. Modeling the dynamics of this manipulator presents an inherent complexity due to its closed-loop structure and kinematic constraints. In the first part of this paper, the inverse kinematics of the manipulator, which consists of position, velocity, and acceleration, is studied. In the second part, the inverse and forward dynamics of the manipulator is formulated based on the principle of virtual work and link Jacobian matrices. Finally, the numerical example is presented for some trajectories.


Author(s):  
Bo Hu ◽  
Yi Lu ◽  
Jia Yin Xu ◽  
Jing Jing Yu

The inverse kinematics and the driving forces of a 3RPS-3SPR serial-parallel manipulator (PM) with 6 degree of freedoms (DOFs) are solved in this paper. This 3RPS-3SPR serial-PM includes a lower 3-RPS PM and an upper 3-SPR PM. First, the inverse displacement is solved based on the geometrical constraint and the dimension constraint of this PM. Second, the 9×9 and 6×6 form inverse Jacobian matrices are derived and the driving forces are solved by using principle of virtual work. Finally, the numerical example is given.


Sign in / Sign up

Export Citation Format

Share Document