scholarly journals On the structural complexity of central European agroforestry systems: a quantitative assessment using terrestrial laser scanning in single-scan mode

2021 ◽  
Vol 95 (4) ◽  
pp. 669-685
Author(s):  
Dominik Seidel ◽  
Melissa Stiers ◽  
Martin Ehbrecht ◽  
Maik Werning ◽  
Peter Annighöfer

AbstractAgroforestry systems provide important ecosystem functions and services. They have the potential to enrich agricultural monocultures in central Europe with structural elements otherwise absent, which is expected to be accompanied by a surplus of ecosystem functions. Here we used quantitative measures derived from terrestrial laser scanning in single-scan mode to describe the structural complexity, the canopy openness, the foliage height diversity and the understory complexity of four common agroforest systems in central Europe. We accessed silvopasture systems with grazing ponies and cattle as well as fellow deer, short rotation forests with agricultural use between the tree rows, tree orchards with grazing sheep and Christmas tree plantations on which chickens forage. As a reference, we used data for 65 forest sites across Germany, representing different forest types, various dominant tree species, stand ages and management systems. We found that overall stand structural complexity is ranked as follows: forest > silvopasture systems > short rotation forest > tree orchard > Christmas tree plantation. Consequently, if overall structural complexity of an agricultural landscape shall be enriched, there is now strong evidence on how this may be achieved using agroforests. However, if the focus lies on selected structures that serve specific functions, e.g. dense understory to provide animal shelter, specific types of agroforests may be chosen and the ranking in overall structural complexity may be less important.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Martin Ehbrecht ◽  
Dominik Seidel ◽  
Peter Annighöfer ◽  
Holger Kreft ◽  
Michael Köhler ◽  
...  

AbstractThe complexity of forest structures plays a crucial role in regulating forest ecosystem functions and strongly influences biodiversity. Yet, knowledge of the global patterns and determinants of forest structural complexity remains scarce. Using a stand structural complexity index based on terrestrial laser scanning, we quantify the structural complexity of boreal, temperate, subtropical and tropical primary forests. We find that the global variation of forest structural complexity is largely explained by annual precipitation and precipitation seasonality (R² = 0.89). Using the structural complexity of primary forests as benchmark, we model the potential structural complexity across biomes and present a global map of the potential structural complexity of the earth´s forest ecoregions. Our analyses reveal distinct latitudinal patterns of forest structure and show that hotspots of high structural complexity coincide with hotspots of plant diversity. Considering the mechanistic underpinnings of forest structural complexity, our results suggest spatially contrasting changes of forest structure with climate change within and across biomes.


2021 ◽  
Vol 13 (8) ◽  
pp. 1513
Author(s):  
Dominik Seidel ◽  
Peter Annighöfer ◽  
Christian Ammer ◽  
Martin Ehbrecht ◽  
Katharina Willim ◽  
...  

The structural complexity of the understory layer of forests or shrub layer vegetation in open shrublands affects many ecosystem functions and services provided by these ecosystems. We investigated how the basal area of the overstory layer, annual and seasonal precipitation, annual mean temperature, as well as light availability affect the structural complexity of the understory layer along a gradient from closed forests to open shrubland with only scattered trees. Using terrestrial laser scanning data and the understory complexity index (UCI), we measured the structural complexity of sites across a wide range of precipitation and temperature, also covering a gradient in light availability and basal area. We found significant relationships between the UCI and tree basal area as well as canopy openness. Structural equation models (SEMs) confirmed significant direct effects of seasonal precipitation on the UCI without mediation through basal area or canopy openness. However, annual precipitation and temperature effects on the UCI are mediated through canopy openness and basal area, respectively. Understory complexity is, despite clear dependencies on the available light and overall stand density, significantly and directly driven by climatic parameters, particularly the amount of precipitation during the driest month.


2021 ◽  
Vol 13 (14) ◽  
pp. 2773
Author(s):  
Georgios Arseniou ◽  
David W. MacFarlane ◽  
Dominik Seidel

Trees have a fractal-like branching architecture that determines their structural complexity. We used terrestrial laser scanning technology to study the role of foliage in the structural complexity of urban trees. Forty-five trees of three deciduous species, Gleditsia triacanthos, Quercus macrocarpa, Metasequoia glyptostroboides, were sampled on the Michigan State University campus. We studied their structural complexity by calculating the box-dimension (Db) metric from point clouds generated for the trees using terrestrial laser scanning, during the leaf-on and -off conditions. Furthermore, we artificially defoliated the leaf-on point clouds by applying an algorithm that separates the foliage from the woody material of the trees, and then recalculated the Db metric. The Db of the leaf-on tree point clouds was significantly greater than the Db of the leaf-off point clouds across all species. Additionally, the leaf removal algorithm introduced bias to the estimation of the leaf-removed Db of the G. triacanthos and M. glyptostroboides trees. The index capturing the contribution of leaves to the structural complexity of the study trees (the ratio of the Db of the leaf-on point clouds divided by the Db of the leaf-off point clouds minus one), was negatively correlated with branch surface area and different metrics of the length of paths through the branch network of the trees, indicating that the contribution of leaves decreases as branch network complexity increases. Underestimation of the Db of the G. triacanthos trees, after the artificial leaf removal, was related to maximum branch order. These results enhance our understanding of tree structural complexity by disentangling the contribution of leaves from that of the woody structures. The study also highlighted important methodological considerations for studying tree structure, with and without leaves, from laser-derived point clouds.


2013 ◽  
Vol 29 (4) ◽  
pp. 313-319 ◽  
Author(s):  
Jamille de Assis Bomfim ◽  
Roberta Mariano Silva ◽  
Virgínia de Fernandes Souza ◽  
Edyla Ribeiro de Andrade ◽  
Eliana Cazetta

Abstract:To investigate the influence of forests and agroforestry systems on fruit consumption by birds, we studied two landscapes, one covered predominantly with forests and the other dominated by traditional shade cocoa plantations. In each landscape, we sampled three forest fragments and three shade cocoa plantations. We placed 15 artificial fruits in 25, 1–2-m-tall shrubs spaced every 50 m and evaluated the detection and consumption of fruits after 72 h. We used hemispherical photographs positioned above each fruit station to evaluate canopy openness. We found a statistically significant difference in fruit consumption between landscapes, which means that more fruits were detected and consumed in the forest-dominated landscape. However, forests and shade cocoa plantations within each landscape exhibited similar fruit consumption. Canopy openness was similar between the landscapes, however, the cocoa plantations exhibited greater canopy openness than forests. The results of this study reinforce the importance of the presence of forests in the agricultural landscape. Thus, to evaluate the capacity of agroforest to protect species and maintain ecological interactions it is also necessary to consider the landscape context.


2021 ◽  
Vol 13 (16) ◽  
pp. 3153
Author(s):  
Georgios Arseniou ◽  
David W. MacFarlane ◽  
Dominik Seidel

Urban forests are part of the global forest network, providing important benefits to human societies. Advances in remote-sensing technology can create detailed 3D images of trees, giving novel insights into tree structure and function. We used terrestrial laser scanning and quantitative structural models to provide comprehensive characterizations of the woody surface area allometry of urban trees and relate them to urban tree anatomy, physiology, and structural complexity. Fifty-six trees of three species (Gleditsia triacanthos L., Quercus macrocarpa Michx., Metasequoia glyptostroboides Hu & W.C. Cheng) were sampled on the Michigan State University campus. Variations in surface area allocation to non-photosynthesizing components (main stem, branches) are related to the fractal dimension of tree architecture, in terms of structural complexity (box-dimension metric) and the distribution of “path” lengths from the tree base to every branch tip. The total woody surface area increased with the box-dimension metric, but it was most strongly correlated with the 25th percentile of path lengths. These urban trees mainly allocated the woody surface area to branches, which changed with branch order, branch-base diameter, and branch-base height. The branch-to-stem area ratio differed among species and increased with the box-dimension metric. Finally, the woody surface area increased with the crown surface area of the study trees across all species combined and within each species. The results of this study provide novel data and new insights into the surface area properties of urban tree species and the links with structural complexity and constraints on tree morphology.


Sign in / Sign up

Export Citation Format

Share Document