scholarly journals Stieleria varia sp. nov., isolated from wood particles in the Baltic Sea, constitutes a novel species in the family Pirellulaceae within the phylum Planctomycetes

2020 ◽  
Vol 113 (12) ◽  
pp. 1953-1963
Author(s):  
Frank Surup ◽  
Sandra Wiegand ◽  
Christian Boedeker ◽  
Anja Heuer ◽  
Stijn H. Peeters ◽  
...  

AbstractSpecies belonging to the bacterial phylum Planctomycetes are ubiquitous members of the microbial communities in aquatic environments and are frequently isolated from various biotic and abiotic surfaces in marine and limnic water bodies. Planctomycetes have large genomes of up to 12.4 Mb, follow complex lifestyles and display an uncommon cell biology; features which motivate the investigation of members of this phylum in greater detail. As a contribution to the current collection of axenic cultures of Planctomycetes, we here describe strain Pla52T isolated from wood particles in the Baltic Sea. Phylogenetic analysis places the strain in the family Pirellulaceae and suggests two species of the recently described genus Stieleria as current closest neighbours. Strain Pla52nT shows typical features of members of the class Planctomycetia, including division by polar budding and the presence of crateriform structures. Colonies of strain Pla52nT have a light orange colour, which is an unusual pigmentation compared to the majority of members in the phylum, which show either a pink to red pigmentation or entirely lack pigmentation. Optimal growth of strain Pla52nT at 33 °C and pH 7.5 indicates a mesophilic (i.e. with optimal growth between 20 and 45 °C) and neutrophilic growth profile. The strain is an aerobic heterotroph with motile daughter cells. Its genome has a size of 9.6 Mb and a G + C content of 56.0%. Polyphasic analyses justify delineation of the strain from described species within the genus Stieleria. Therefore, we conclude that strain Pla52nT = LMG 29463T = VKM B-3447T should be classified as the type strain of a novel species, for which we propose the name Stieleria varia sp. nov.

2020 ◽  
Vol 113 (12) ◽  
pp. 1939-1952 ◽  
Author(s):  
Muhammad Waqqas ◽  
Markus Salbreiter ◽  
Nicolai Kallscheuer ◽  
Mareike Jogler ◽  
Sandra Wiegand ◽  
...  

AbstractPlanctomycetes are ubiquitous bacteria with fascinating cell biological features. Strains available as axenic cultures in most cases have been isolated from aquatic environments and serve as a basis to study planctomycetal cell biology and interactions in further detail. As a contribution to the current collection of axenic cultures, here we characterise three closely related strains, Poly24T, CA51T and Mal33, which were isolated from the Baltic Sea, the Pacific Ocean and the Mediterranean Sea, respectively. The strains display cell biological features typical for related Planctomycetes, such as division by polar budding, presence of crateriform structures and formation of rosettes. Optimal growth was observed at temperatures of 30–33 °C and at pH 7.5, which led to maximal growth rates of 0.065–0.079 h−1, corresponding to generation times of 9–11 h. The genomes of the novel isolates have a size of 7.3–7.5 Mb and a G + C content of 57.7–58.2%. Phylogenetic analyses place the strains in the family Pirellulaceae and suggest that Roseimaritima ulvae and Roseimaritima sediminicola are the current closest relatives. Analysis of five different phylogenetic markers, however, supports the delineation of the strains from members of the genus Roseimaritima and other characterised genera in the family. Supported by morphological and physiological differences, we conclude that the strains belong to the novel genus Rosistilla gen. nov. and constitute two novel species, for which we propose the names Rosistilla carotiformis sp. nov. and Rosistilla oblonga sp. nov. (the type species). The two novel species are represented by the type strains Poly24T (= DSM 102938T = VKM B-3434T = LMG 31347T = CECT 9848T) and CA51T (= DSM 104080T = LMG 29702T), respectively.


2020 ◽  
Vol 113 (12) ◽  
pp. 1851-1862 ◽  
Author(s):  
Stijn H. Peeters ◽  
Sandra Wiegand ◽  
Nicolai Kallscheuer ◽  
Mareike Jogler ◽  
Anja Heuer ◽  
...  

AbstractPlanctomycetes occur in almost all aquatic ecosystems on earth. They have a remarkable cell biology, and members of the orders Planctomycetales and Pirellulales feature cell division by polar budding, perform a lifestyle switch from sessile to motile cells and have an enlarged periplasmic space. Here, we characterise a novel planctomycetal strain, Pla110T, isolated from the surface of polystyrene particles incubated in the Baltic Sea. After phylogenetic analysis, the strain could be placed in the family Planctomycetaceae. Strain Pla110T performs cell division by budding, has crateriform structures and grows in aggregates or rosettes. The strain is a chemoheterotroph, grows under mesophilic and neutrophilic conditions, and exhibited a doubling time of 21 h. Based on our phylogenetic and morphological characterisation, strain Pla110T (DSM 103387T = LMG 29693T) is concluded to represent a novel species belonging to a novel genus, for which we propose the name Polystyrenella longa gen. nov., sp. nov.


2007 ◽  
Vol 11 (5) ◽  
pp. 1593-1607 ◽  
Author(s):  
C. Humborg ◽  
C.-M. Mörth ◽  
M. Sundbom ◽  
F. Wulff

Abstract. The paper reviews critical processes for the land-sea fluxes of biogenic elements (C, N, P, Si) in the Baltic Sea catchment and discusses possible future scenarios as a consequence of improved sewage treatment, agricultural practices and increased hydropower demand (for N, P and Si) and of global warming, i.e., changes in hydrological patterns (for C). These most significant drivers will not only change the total amount of nutrient inputs and fluxes of organic and inorganic forms of carbon to the Baltic Sea, their ratio (C:N:P:Si) will alter as well with consequences for phytoplankton species composition in the Baltic Sea. In summary, we propose that N fluxes may increase due to higher livestock densities in those countries recently acceded to the EU, whereas P and Si fluxes may decrease due to an improved sewage treatment in these new EU member states and with further damming and still eutrophic states of many lakes in the entire Baltic Sea catchment. This might eventually decrease cyanobacteria blooms in the Baltic but increase the potential for other nuisance blooms. Dinoflagellates could eventually substitute diatoms that even today grow below their optimal growth conditions due to low Si concentrations in some regions of the Baltic Sea. C fluxes will probably increase from the boreal part of the Baltic Sea catchment due to the expected higher temperatures and heavier rainfall. However, it is not clear whether dissolved organic carbon and alkalinity, which have opposite feedbacks to global warming, will increase in similar amounts, because the spring flow peak will be smoothed out in time due to higher temperatures that cause less snow cover and deeper soil infiltration.


2007 ◽  
Vol 4 (3) ◽  
pp. 1095-1131 ◽  
Author(s):  
C. Humborg ◽  
C.-M. Mörth ◽  
M. Sundbom ◽  
F. Wulff

Abstract. The paper reviews critical processes for the land-sea fluxes of biogenic elements (C, N, P, Si) in the Baltic Sea catchment and discusses possible future scenarios as a consequence of improved sewage treatment, agricultural practices, increased hydropower demand and global warming, i.e., changes in hydrological patterns. These most significant drivers will not only change the total amount of nutrient inputs and fluxes of organic and inorganic forms of carbon to the Baltic Sea, their ratio (C:N:P:Si) will alter as well with consequences for phytoplankton species composition in the Baltic Sea. In summary, we propose that N fluxes will increase due to higher live stock densities in those countries recently acceded to the EU, whereas P and Si fluxes will decrease due to an increase in sewage treatment in these new EU member states and with further damming and still eutrophic states of many lakes in the entire Baltic Sea catchment. This might eventually decrease cyanobacteria blooms in the Baltic but increase the potential for other nuisance blooms. Dinoflagellates will be substituting diatoms that even today grow below their optimal growth conditions due to low Si concentrations in some regions of the Baltic Sea. C fluxes will probably increase from the boreal part of the Baltic Sea catchment due to the expected higher temperatures and heavier rainfall. However, it is not clear whether both dissolved organic carbon and alkalinity, that have opposite feedbacks to global warming will increase in similar amounts, since the spring flow peak will be smoothed out in time due to higher temperatures that cause less snow cover and deeper soil infiltration.


2020 ◽  
Vol 113 (12) ◽  
pp. 1965-1977
Author(s):  
Markus Salbreiter ◽  
Muhammad Waqqas ◽  
Mareike Jogler ◽  
Nicolai Kallscheuer ◽  
Sandra Wiegand ◽  
...  

AbstractPlanctomycetes is a phylum of environmentally important bacteria, which also receive significant attention due to their fascinating cell biology. Access to axenic Planctomycete cultures is crucial to study cell biological features within this phylum in further detail. In this study, we characterise three novel strains, Mal52T, Pan258 and CA54T, which were isolated close to the coasts of the islands Mallorca (Spain) and Panarea (Italy), and from Monterey Bay, CA, USA. The three isolates show optimal growth at temperatures between 22 and 24 °C and at pH 7.5, divide by polar budding, lack pigmentation and form strong aggregates in liquid culture. Analysis of five phylogenetic markers suggests that the strains constitute two novel species within a novel genus in the family Planctomycetaceae. The strains Mal52T (DSM 101177T = VKM B-3432T) and Pan258 were assigned to the species Symmachiella dynata gen nov., sp. nov., while strain CA54T (DSM 104301T = VKM B-3450T) forms a separate species of the same genus, for which we propose the name Symmachiella macrocystis sp. nov.


2021 ◽  
Vol 50 (3) ◽  
pp. 333-337
Author(s):  
Leszek Rolbiecki ◽  
Bartłomiej Arciszewski ◽  
Joanna N. Izdebska

Abstract The swordfish, Xiphias gladius Linnaeus, 1758, is a fish that sporadically enters the Baltic Sea. The present paper describes the identification of a very rarely recorded and poorly studied copepod of the family Philichthyidae – Philichthys xiphiae Steenstrup, 1862 – in a dead swordfish found on a sea beach in Dźwirzyno (Poland) in 2016. Philichthyidae are parasites inhabiting the sensory canals in the lateral line and skull bones of marine fish. In the present case, two P. xiphiae females were found, which constitutes the first record of the species in the Baltic area.


2017 ◽  
Vol 153 (3) ◽  
pp. 147-157 ◽  
Author(s):  
Valentina G. Kuznetsova ◽  
Anna Maryańska-Nadachowska ◽  
Nazar A. Shapoval ◽  
Boris A. Anokhin ◽  
Anatoly P. Shapoval

We studied the karyotypes of 8 dragonfly species originating from the Curonian Spit (the Baltic Sea, Russia) using C-banding and FISH with 18S rDNA and “insect” telomeric (TTAGG)n probes. Our results show that Leucorrhinia rubicunda, Libellula depressa, L. quadrimaculata, Orthetrum cancellatum, Sympetrum danae, and S. vulgatum from the family Libellulidae, as well as Cordulia aenea and Epitheca bimaculata from the family Corduliidae share 2n = 25 (24 + X) in males, with a minute pair of m-chromosomes being present in every karyotype except for that of C. aenea. Major rDNA clusters are located on one of the large pairs of autosomes in all the species. No hybridization signals were obtained by FISH with the (TTAGG)n probe in the examined species with the only exception of S. vulgatum. In this species, clear signals were detected at the ends of almost all chromosomes. This finding raises the possibility that in Odonata the canonical “insect” (TTAGG)n telomeric repeat is in fact present but in very low copy number and is consequently difficult to detect by in situ hybridization. We conclude that more work needs to be done to answer questions about the organization of telomeres in this very ancient and thus phylogenetically important insect order.


Author(s):  
A. Jones

The turbot Scophthalmus maximus L. is a large teleost flatfish of the family Bothidae. Its range extends from the Adriatic (Faber, 1883) and Mediterranean (Morgan, 1956) northwards to the Norwegian coast, and includes the Baltic Sea and waters surrounding the British Isles. It has been recorded as far north as the Lofoten Islands (Fulton, 1905), and is taken occasionally at Faroe, Iceland and Rockall.


Phytotaxa ◽  
2019 ◽  
Vol 400 (3) ◽  
pp. 165 ◽  
Author(s):  
TATIANA MIKHAILYUK ◽  
OKSANA VINOGRADOVA ◽  
ANDREAS HOLZINGER ◽  
KARIN GLASER ◽  
ELENA SAMOLOV ◽  
...  

Representatives of the Gomontiellaceae (Oscillatoriales) are rare and hence unstudied cyanobacteria with unusual morphology, distributed in terrestrial and aquatic habitats all over the world. Investigation of the group based on an integrative approach is only beginning, and to understand the actual biodiversity and ecology, a greater number of cultivated strains is necessary. However, some ecological traits of these cyanobacteria (e.g. low population densities, the absence of conspicuous growth in nature) led to methodological difficulties during isolation in culture. One species in the family Gomontiellaceae, Crinalium magnum Fritsch et John, is characterized by prominent wide and flattened trichomes, and represented by the non-authentic strain SAG 34.87. Detailed previous investigation of this strain clearly showed its morphological discrepancy with the original description of C. magnum and the genus Crinalium in general. The new isolate from maritime sand dunes of the Baltic Sea coast (Germany), however, revealed morphological characters completely corresponding with the diagnosis of C. magnum. Phylogenetic analysis based on 16S rRNA sequences indicated a position of the new strain inside Gomontiellaceae. Both morphology and ultrastructure of the strain are congruous with characters of the family. Epitypification and emendation of C. magnum are proposed since the ecology and habitat of the original strain are congruent with the type locality of this rare species (sand, Irish Sea coast, North Wales, UK). We expanded the description of C. magnum by details of the filament development and specified dimensional ranges for trichomes and cells, as well as by new data about the transversely striated structure of mucilaginous sheath.


Boreas ◽  
2002 ◽  
Vol 31 (1) ◽  
pp. 65-74 ◽  
Author(s):  
Christian Christiansen ◽  
Helmar Kunzendorf ◽  
Kay-Christian Emeis ◽  
Rudolf Endler ◽  
Ulrich Struck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document