Numerical method for dynamics of multi-body systems with two-dimensional Coulomb dry friction and nonholonomic constraints

2017 ◽  
Vol 38 (12) ◽  
pp. 1733-1752 ◽  
Author(s):  
Ziyao Xu ◽  
Qi Wang ◽  
Qingyun Wang
2011 ◽  
Vol 21 (10) ◽  
pp. 3043-3046 ◽  
Author(s):  
SERGEY STEPANOV

A two-mass oscillator with one mass lying on the driving belt with dry Coulomb friction is considered. A numerical method for finding all limit cycles and their parametric investigation, based on the analysis of fixed points of a two-dimensional map, is suggested. As successive points for the map we chose points of friction transferred from stick mode to slip mode. These transfers are defined by two equalities and yield a two-dimensional map, in contrast to three-dimensional maps that we can construct for regularized continuous dry friction laws.


1963 ◽  
Vol 85 (1) ◽  
pp. 17-26 ◽  
Author(s):  
T. P. Goodman

The effect of Coulomb (dry) friction between surfaces of adjacent machine members, either in preventing relative sliding motion or in absorbing energy when relative motion does occur, has traditionally been analyzed on a one-dimensional basis. The two-dimensional analysis presented in this paper shows how the effectiveness of Coulomb friction in preventing relative sliding motion is greatly reduced by eccentric loading, and how the effectiveness of Coulomb friction in absorbing the energy of an oscillation may be greatly reduced by the addition of a second oscillatory or unidirectional motion. The results of the analysis are correlated with experimental data.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 49
Author(s):  
Zheng Yuan ◽  
Jin Jiang ◽  
Jun Zang ◽  
Qihu Sheng ◽  
Ke Sun ◽  
...  

In the array design of the vertical axis wind turbines (VAWT), the wake effect of the upstream VAWT on the downstream VAWT needs to be considered. In order to simulate the velocity distribution of a VAWT wake rapidly, a new two-dimensional numerical method is proposed, which can make the array design easier and faster. In this new approach, the finite vortex method and vortex particle method are combined to simulate the generation and evolution of the vortex, respectively, the fast multipole method (FMM) is used to accelerate the calculation. Based on a characteristic of the VAWT wake, that is, the velocity distribution can be fitted into a power-law function, a new correction model is introduced to correct the three-dimensional effect of the VAWT wake. Finally, the simulation results can be approximated to the published experimental results in the first-order. As a new numerical method to simulate the complex VAWT wake, this paper proves the feasibility of the method and makes a preliminary validation. This method is not used to simulate the complex three-dimensional turbulent evolution but to simulate the velocity distribution quickly and relatively accurately, which meets the requirement for rapid simulation in the preliminary array design.


2011 ◽  
Vol 66-68 ◽  
pp. 933-936
Author(s):  
Xian Jie Meng

A one degree of freedom nonlinear dynamics model of self-excited vibration induced by dry-friction was built firstly, the numerical method was taken to study the impacts of structure parameters on self-excited vibration. The calculation result shows that the variation of stiffness can change the vibration amplitude and frequency of the self-excited vibration, but can not eliminate it, Along with the increase of system damping the self-excite vibration has the weakened trend and there a ritical damping, when damping is greater than it the self-excite vibration will be disappeared.


Sign in / Sign up

Export Citation Format

Share Document