Decentralizing and coevolving differential evolution for large-scale global optimization problems

2017 ◽  
Vol 47 (4) ◽  
pp. 1208-1223 ◽  
Author(s):  
Ruoli Tang
2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Ali Wagdy Mohamed ◽  
Abdulaziz S. Almazyad

This paper presents Differential Evolution algorithm for solving high-dimensional optimization problems over continuous space. The proposed algorithm, namely, ANDE, introduces a new triangular mutation rule based on the convex combination vector of the triplet defined by the three randomly chosen vectors and the difference vectors between the best, better, and the worst individuals among the three randomly selected vectors. The mutation rule is combined with the basic mutation strategy DE/rand/1/bin, where the new triangular mutation rule is applied with the probability of 2/3 since it has both exploration ability and exploitation tendency. Furthermore, we propose a novel self-adaptive scheme for gradual change of the values of the crossover rate that can excellently benefit from the past experience of the individuals in the search space during evolution process which in turn can considerably balance the common trade-off between the population diversity and convergence speed. The proposed algorithm has been evaluated on the 20 standard high-dimensional benchmark numerical optimization problems for the IEEE CEC-2010 Special Session and Competition on Large Scale Global Optimization. The comparison results between ANDE and its versions and the other seven state-of-the-art evolutionary algorithms that were all tested on this test suite indicate that the proposed algorithm and its two versions are highly competitive algorithms for solving large scale global optimization problems.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Rashida Adeeb Khanum ◽  
Muhammad Asif Jan ◽  
Nasser Mansoor Tairan ◽  
Wali Khan Mashwani

Differential evolution (DE) is an effective and efficient heuristic for global optimization problems. However, it faces difficulty in exploiting the local region around the approximate solution. To handle this issue, local search (LS) techniques could be hybridized with DE to improve its local search capability. In this work, we hybridize an updated version of DE, adaptive differential evolution with optional external archive (JADE) with an expensive LS method, Broydon-Fletcher-Goldfarb-Shano (BFGS) for solving continuous unconstrained global optimization problems. The new hybrid algorithm is denoted by DEELS. To validate the performance of DEELS, we carried out extensive experiments on well known test problems suits, CEC2005 and CEC2010. The experimental results, in terms of function error values, success rate, and some other statistics, are compared with some of the state-of-the-art algorithms, self-adaptive control parameters in differential evolution (jDE), sequential DE enhanced by neighborhood search for large-scale global optimization (SDENS), and differential ant-stigmergy algorithm (DASA). These comparisons reveal that DEELS outperforms jDE and SDENS except DASA on the majority of test instances.


Author(s):  
Ahmed Fouad Ali ◽  
Nashwa Nageh Ahmed

Differential evolution algorithm (DE) is one of the most applied meta-heuristics algorithm for solving global optimization problems. However, the contributions of applying DE for large-scale global optimization problems are still limited compared with those problems for low dimensions. In this chapter, a new differential evolution algorithm is proposed in order to solve large-scale optimization problems. The proposed algorithm is called differential evolution with space partitioning (DESP). In DESP algorithm, the search variables are divided into small groups of partitions. Each partition contains a certain number of variables and this partition is manipulated as a subspace in the search process. Searching a limited number of variables in each partition prevents the DESP algorithm from wandering in the search space especially in large-scale spaces. The proposed algorithm is investigated on 15 benchmark functions and compared against three variants DE algorithms. The results show that the proposed algorithm is a cheap algorithm and obtains good results in a reasonable time.


Author(s):  
Diego Teijeiro ◽  
Xoán C Pardo ◽  
Patricia González ◽  
Julio R Banga ◽  
Ramón Doallo

Many key problems in science and engineering can be formulated and solved using global optimization techniques. In the particular case of computational biology, the development of dynamic (kinetic) models is one of the current key issues. In this context, the problem of parameter estimation (model calibration) remains as a very challenging task. The complexity of the underlying models requires the use of efficient solvers to achieve adequate results in reasonable computation times. Metaheuristics have been the focus of great consideration as an efficient way of solving hard global optimization problems. Even so, in most realistic applications, metaheuristics require a very large computation time to obtain an acceptable result. Therefore, several parallel schemes have been proposed, most of them focused on traditional parallel programming interfaces and infrastructures. However, with the emergence of cloud computing, new programming models have been proposed to deal with large-scale data processing on clouds. In this paper we explore the applicability of these new models for global optimization problems using as a case study a set of challenging parameter estimation problems in systems biology. We have developed, using Spark, an island-based parallel version of Differential Evolution. Differential Evolution is a simple population-based metaheuristic that, at the same time, is very popular for being very efficient in real function global optimization. Several experiments were conducted both on a cluster and on the Microsoft Azure public cloud to evaluate the speedup and efficiency of the proposal, concluding that the Spark implementation achieves not only competitive speedup against the serial implementation, but also good scalability when the number of nodes grows. The results can be useful for those interested in using parallel metaheuristics for global optimization problems benefiting from the potential of new cloud programming models.


Algorithms ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 146
Author(s):  
Aleksei Vakhnin ◽  
Evgenii Sopov

Modern real-valued optimization problems are complex and high-dimensional, and they are known as “large-scale global optimization (LSGO)” problems. Classic evolutionary algorithms (EAs) perform poorly on this class of problems because of the curse of dimensionality. Cooperative Coevolution (CC) is a high-performed framework for performing the decomposition of large-scale problems into smaller and easier subproblems by grouping objective variables. The efficiency of CC strongly depends on the size of groups and the grouping approach. In this study, an improved CC (iCC) approach for solving LSGO problems has been proposed and investigated. iCC changes the number of variables in subcomponents dynamically during the optimization process. The SHADE algorithm is used as a subcomponent optimizer. We have investigated the performance of iCC-SHADE and CC-SHADE on fifteen problems from the LSGO CEC’13 benchmark set provided by the IEEE Congress of Evolutionary Computation. The results of numerical experiments have shown that iCC-SHADE outperforms, on average, CC-SHADE with a fixed number of subcomponents. Also, we have compared iCC-SHADE with some state-of-the-art LSGO metaheuristics. The experimental results have shown that the proposed algorithm is competitive with other efficient metaheuristics.


2018 ◽  
Vol 8 (10) ◽  
pp. 1945 ◽  
Author(s):  
Tarik Eltaeib ◽  
Ausif Mahmood

Differential evolution (DE) has been extensively used in optimization studies since its development in 1995 because of its reputation as an effective global optimizer. DE is a population-based metaheuristic technique that develops numerical vectors to solve optimization problems. DE strategies have a significant impact on DE performance and play a vital role in achieving stochastic global optimization. However, DE is highly dependent on the control parameters involved. In practice, the fine-tuning of these parameters is not always easy. Here, we discuss the improvements and developments that have been made to DE algorithms. In particular, we present a state-of-the-art survey of the literature on DE and its recent advances, such as the development of adaptive, self-adaptive and hybrid techniques.


Sign in / Sign up

Export Citation Format

Share Document