scholarly journals Junction conditions and consequences of quasi-spherical space-time with electro-magnetic field and Vaidya metric

2007 ◽  
Vol 313 (4) ◽  
pp. 431-436 ◽  
Author(s):  
Soma Nath ◽  
Ujjal Debnath ◽  
Subenoy Chakraborty
2021 ◽  
Author(s):  
Sangwha Yi

We find Einstein’s notational equation of the electro-magnetic field equation and the electromagneticfield in Rindler space-time. Because, electromagnetic fields of the accelerated frame include in general relativity theory.


2010 ◽  
Vol 07 (01) ◽  
pp. 33-93 ◽  
Author(s):  
DAVID ALBA ◽  
LUCA LUSANNA

By using the 3 + 1 point of view and parametrized Minkowski theories we develop the theory of noninertial frames in Minkowski space-time. The transition from a noninertial frame to another one is a gauge transformation connecting the respective notions of instantaneous three-space (clock synchronization convention) and of the three-coordinates inside them. As a particular case we get the extension of the inertial rest-frame instant form of dynamics to the noninertial rest-frame one. We show that every isolated system can be described as an external decoupled noncovariant canonical center of mass (described by frozen Jacobi data) carrying a pole–dipole structure: the invariant mass and an effective spin. Moreover we identify the constraints eliminating the internal three-center of mass inside the instantaneous three-spaces. In the case of the isolated system of positive-energy scalar particles with Grassmann-valued electric charges plus the electro-magnetic field, we obtain both Maxwell equations and their Hamiltonian description in noninertial frames. Then by means of a noncovariant decomposition we define the noninertial radiation gauge and we find the form of the noncovariant Coulomb potential. We identify the coordinate-dependent relativistic inertial potentials and we show that they have the correct Newtonian limit. In the second paper we will study properties of Maxwell equations in noninertial frames like the wrap-up effect and the Faraday rotation in astrophysics. Also the 3 + 1 description without coordinate-singularities of the rotating disk and the Sagnac effect will be given, with added comments on pulsar magnetosphere and on a relativistic extension of the Earth-fixed coordinate system.


2020 ◽  
Vol 2020 (10) ◽  
pp. 4-11
Author(s):  
Victor Tikhomirov ◽  
Aleksandr Gorlenko ◽  
Stanislav Volohov ◽  
Mikhail Izmerov

The work purpose is the investigation of magnetic field impact upon properties of friction steel surfaces at fit stripping with tightness through manifested effects and their wear visually observed. On the spots of a real contact the magnetic field increases active centers, their amount and saturation with the time of dislocation outlet, and has an influence upon tribo-mating. The external electro-magnetic field promotes the increase of the number of active centers at the expense of dislocations outlet on the contact surface, and the increase of a physical contact area results in friction tie strengthening and growth of a friction factor. By the example of friction pairs of a spentonly unit in the suspension of coach cars there is given a substantiation of actuality and possibility for the creation of technical devices with the controlled factor of friction and the stability of effects achieved is also confirmed experimentally. Investigation methods: the fulfillment of laboratory physical experiments on the laboratory plant developed and patented on bush-rod samples inserted with the fit and tightness. The results of investigations and novelty: the impact of the magnetic field upon the value of a stripping force of a press fit with the guaranteed tightness is defined. Conclusion: there is a possibility to control a friction factor through the magnetic field impact upon a friction contact.


In a previous paper the absorption of γ-rays in the K-X-ray levels of the atom in which they are emitted was calculated according to the Quantum Mechanics, supposing the γ-rays to be emitted from a doublet of moment f ( t ) at the centre of the atom. The non-relativity wave equation derived from the relativity wave equation for an electron of charge — ε moving in an electro-magnetic field of vector potential K and scalar potential V is h 2 ∇ 2 ϕ + 2μ ( ih ∂/∂ t + εV + ih ε/μ c (K. grad)) ϕ = 0. (1) Suppose, however, that K involves the space co-ordinates. Then, (K. grad) ϕ ≠ (grad . K) ϕ , and the expression (K . grad) ϕ is not Hermitic. Equation (1) cannot therefore be the correct non-relativity wave equation for a single electron in an electron agnetic field, and we must substitute h 2 ∇ 2 ϕ + 2μ ( ih ∂/∂ t + εV) ϕ + ih ε/ c ((K. grad) ϕ + (grad. K) ϕ ) = 0. (2)


Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 22
Author(s):  
Avijit K. Ganguly ◽  
Venktesh Singh ◽  
Damini Singh ◽  
Ankur Chaubey

In the presence of a thermal medium or an external electro-magnetic field, neutrinos can interact with photon, mediated by the corresponding charged leptons (real or virtual). The effect of a medium or an electromagnetic field is two-fold—to induce an effective [...]


Sign in / Sign up

Export Citation Format

Share Document