Effect of hypoxia on stromal precursors from rat bone marrow at the early stage of culturing

2007 ◽  
Vol 143 (4) ◽  
pp. 411-413 ◽  
Author(s):  
L. B. Buravkova ◽  
E. B. Anokhina
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Masanobu Izumikawa ◽  
Keijiro Hayashi ◽  
Mohammad Ali Akbor Polan ◽  
Jia Tang ◽  
Takashi Saito

The aim of this study was to clarify the function of amelogenin, the major protein of enamel matrix derivative, on the proliferation, differentiation, and mineralization of cultured rat bone marrow stem cells (BMSCs), toward the establishment of future bone regenerative therapies. No differences in the morphology of BMSCs or in cell numbers were found between amelogenin addition and additive-free groups. The promotion of ALPase activity and the formation of mineralized nodules were detected at an early stage in amelogenin addition group. In quantitative real-time RT-PCR, mRNA expression of osteopontin, osteonectin, and type I collagen was promoted for 0.5 hours and 24 hours by addition of amelogenin. The mRNA expression of osteocalcin and DMP-1 was also stimulated for 24 hours and 0.5 hours, respectively, in amelogenin addition group. These findings clearly indicate that amelogenin promoted the differentiation and mineralization of rat BMSCs but did not affect cell proliferation or cell morphology.


Author(s):  
ARIYANI NOVIANTARI ◽  
RADIANA DHEWAYANI ANTARIANTO ◽  
LUTFAH RIF’ATI ◽  
RATIH RINENDYAPUTRI ◽  
MASAGUS ZAINURI ◽  
...  

Objective: The aim of this study was to examine the role of NT-3 as a single neurotrophic factor in the expression of nestin in the neural differentiation of MSCs. Methods: MSCs were isolated from rat bone marrow and induced with NT-3 at concentrations of 20, 25, and 30 ng/ml for 7 and 14 d (the control was no NT-3). Nestin underwent immunocytochemical analysis on days 7 and 14. Five high-power random fields were documented. Results: A post-hoc analysis using LSD after one-way ANOVA test yielded a statistically significant difference in the percentage of nestin-positive cells in MSCs with NT-3 at concentrations of 20, 25, and 30 ng/ml for 7 d compared to the control group (p<0.05). The percentages of nestin-positive cells at concentrations of 20, 25, and 30 ng/ml, and in the control data on day 7 were 14.55±1.26%, 16.20±1.07%, 13.78±1.19%, and 9.81±0.79%, respectively. NT-3 at 25 ng/ml induced the highest MSCs neural differentiation on day 7 and remained constant until day 14. Conclusion: NT-3 plays a role in the early stage of differentiating MSCs from rat bone marrow into neurons, with the optimal concentration being 25 ng/ml.


2018 ◽  
Vol 18 ◽  
Author(s):  
Chaitra Venugopal ◽  
Christopher Shamir ◽  
Sivapriya Senthilkumar ◽  
Janitri Venkatachala Babu ◽  
Peedikayil Kurien Sonu ◽  
...  

2019 ◽  
Vol 19 (14) ◽  
pp. 1695-1702 ◽  
Author(s):  
Mohsen Cheki ◽  
Salman Jafari ◽  
Masoud Najafi ◽  
Aziz Mahmoudzadeh

Background and Objective: Glucosamine is a widely prescribed dietary supplement used in the treatment of osteoarthritis. In the present study, the chemoprotectant ability of glucosamine was evaluated against cisplatin-induced genotoxicity and cytotoxicity in rat bone marrow cells. Methods: Glucosamine was orally administrated to rats at doses of 75 and 150 mg/kg body weight for seven consecutive days. On the seventh day, the rats were treated with a single injection of cisplatin (5 mg/kg, i.p.) at 1h after the last oral administration. The cisplatin antagonistic potential of glucosamine was assessed by micronucleus assay, Reactive Oxygen Species (ROS) level analysis, hematological analysis, and flow cytometry. Results: Glucosamine administration to cisplatin-treated rats significantly decreased the frequencies of Micronucleated Polychromatic Erythrocytes (MnPCEs) and Micronucleated Normchromatic Erythrocytes (MnNCEs), and also increased PCE/(PCE+NCE) ratio in bone marrow cells. Furthermore, treatment of rats with glucosamine before cisplatin significantly inhibited apoptosis, necrosis and ROS generation in bone marrow cells, and also increased red blood cells count in peripheral blood. Conclusion: This study shows glucosamine to be a new effective chemoprotector against cisplatin-induced DNA damage and apoptosis in rat bone marrow cells. The results of this study may be helpful in reducing the harmful effects of cisplatin-based chemotherapy in the future.


1979 ◽  
Vol 29 ◽  
pp. 85
Author(s):  
Nobuyoshi Yoshida ◽  
Kohtaro Taniyama ◽  
Chikako Tanaka

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Haiyan Shi ◽  
Xiaoli Li ◽  
Junling Yang ◽  
Yahong Zhao ◽  
Chengbin Xue ◽  
...  

Abstract Background Emerging evidence suggests that neural crest-derived cells (NCCs) present important functions in peripheral nerve regeneration to correct the insufficiency of autogenous Schwann cells. Postmigratory NCCs have been successfully isolated from adult rat bone marrow in our previous work. In this study, we aim to provide neural crest-derived Schwann cell precursors (SCPs) for repair of nerve defects in adult rats, and partially reveal the mechanisms involved in neuroregeneration of cell therapy. Methods A clonal cell line of neural crest precursors of rat bone marrow origin (rBM-NCPs) with SCP identity was expanded in adherent monolayer culture to ensure the stable cell viability of NCPs and potentiate the repair of nerve defects after rBM-NCPs implantation based on tissue engineering nerve grafts (TENG). Here the behavioral, morphological, and electrophysiological detection was performed to evaluate the therapy efficacy. We further investigated the treatment with NCP-conditioned medium (NCP-CM) to sensory neurons after exposure to oxygen-glucose-deprivation (OGD) and partially compared the expression of trophic factor genes in rBM-NCPs with that in mesenchymal stem cells of bone marrow origin (rBM-MSCs). Results It was showed that the constructed TENG with rBM-NCPs loaded into silk fibroin fiber scaffolds/chitosan conduits repaired 10-mm long sciatic nerve defects more efficiently than conduits alone. The axonal regrowth, remyelination promoted the reinnervation of the denervated hind limb muscle and skin and thereby alleviated muscle atrophy and facilitated the rehabilitation of motor and sensory function. Moreover, it was demonstrated that treatment with NCP-CM could restore the cultured primary sensory neurons after OGD through trophic factors including epidermal growth factor (EGF), platelet-derived growth factor alpha (PDGFα), ciliary neurotrophic factor (CNTF), and vascular endothelial growth factor alpha (VEGFα). Conclusions In summary, our findings indicated that monolayer-cultured rBM-NCPs cell-based therapy might effectively repair peripheral nerve defects partially through secreted trophic factors, which represented the secretome of rBM-NCPs differing from that of rBM-MSCs.


2009 ◽  
Vol 132 (5) ◽  
pp. 533-546 ◽  
Author(s):  
Erdal Karaoz ◽  
Ayça Aksoy ◽  
Selda Ayhan ◽  
Ayla Eker Sarıboyacı ◽  
Figen Kaymaz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document